CVPR2021| 行人搜索中的第一个anchor-free模型
Introduction
行人重识别的方法分为两个类别,一类是基于two-step的方法,如图a所示,先使用现成的模型进行行人检测,将其裁剪出来,再放进re-id网络识别。这种方法可以获得比较好的效果,但对时间和资源消耗比较大。第二类是基于one-step的方法,如图b所示,使用一种端到端的方式检测并识别。
AFA通过可变形卷积重塑了FPN的一些构造块,通过特征融合解决了在Re-ID特征学习中区域和尺度不对齐的问题。同时优化了Re-ID和检测在训练过程中的步骤,更注重生成更鲁棒的Re-ID embeddings。这些简单有效的设计成功的将一个经典的anchor-free模型变成了一个很强很有效率的行人搜索框架,超过了anchor-based模型。
Feature Aligned Person Search Network
Aligned Feature Aggregation
Scale Alignment--FCOS采用在不同层检测不同大小的目标,对于一些重叠的有歧义的目标很有可能会分到不同的层,因此可以很好的提升检测效果。然而这对于Re-ID来说这并不好,因为Re-ID需要与gallery set进行比较,在不同的尺度下检测将会出现尺度不对齐的问题。
Region Alignment--前面提到没有ROI-Align操作会出现Region misalignment问题,AlignPS从三个方面处理这个问题。
Task Alignment--提出Re-ID优先是基于以下两点考虑。
Triplet-Aided Online Instance Matching Loss
Conclusion
论文地址:https://arxiv.org/abs/2103.11617
代码地址:https://github.com/daodaofr/AlignPS
---------------------------End---------------------------
10000+人已加入矩阵司南
非常感谢对我们的支持!