从有理数到实数和数的连续体
日期 : 2022年02月12日
正文共 :10551字
无理数或实数的定义; 实数集为什么是连续的、实数集里的数为什么可以和数轴上的点一一对应; 无理数的独特性质; 无理数为什么也满足有理数的运算法则和运算性质(如乘法结合律、分配律等);
第一部分 从有理数集到连续的实数集
第二部分 定义实数的方式
第三部分 回顾Dedekind对实数的定义方式
Courant and Robbins, What Is Mathematics? Second Edition, P60↩ John Stillwell, Numbers and Geometry, P260↩ Richard Dedekind, Essays on the Theory of Numbers, P5↩ Richard Dedekind, Essays on the Theory of Numbers, P5↩ Richard Dedekind, Essays on the Theory of Numbers, P9↩ Richard Courant, Fritz John, Introduction to Calculus and Analysis Volume I, Reprint of the 1989 edition, P2↩ Terence Tao, Analysis I, third edition, P117↩ David French Belding, Kevin J. Mitchell, Foundations of Analysis, 2nd Edition, P21↩ David French Belding, Kevin J. Mitchell, Foundations of Analysis, 2nd Edition, P21↩ Morris Kline, Mathematical Thought from Ancient to Modern Times, Vol. 3, 1990 edition, P984↩ Morris Kline, Mathematical Thought from Ancient to Modern Times, Vol. 3, 1990 edition, P986↩ D.C. Goldrei, Classic Set Theory: For Guided Independent Study,P8↩ Morris Kline, Mathematical Thought from Ancient to Modern Times, Vol. 3, 1990 edition, P987↩ P. Ehrlich,Real Numbers, Generalizations of the Reals, and Theories of Continua, page x↩ Hans Niels Jahnke ,A History of Analysis,P306↩ S. C. Malik, Principles of Real Analysis,P18↩ Courant and Robbins, What Is Mathematics? Second Edition, P71↩ Rudiments of Mathematics Part 1, Academic Publishers,P15↩ Richard Dedekind, Essays on the Theory of Numbers, P7↩ Morris Kline, Mathematical Thought from Ancient to Modern Times, Vol. 3, 1990 edition, P986↩
— THE END —
评论