从最优化的角度看待Softmax损失函数

共 3170字,需浏览 7分钟

 ·

2022-06-09 21:20

点击上方小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

来自 | 知乎   作者 | 王峰
链接丨https://zhuanlan.zhihu.com/p/45014864
仅作学术交流,如有侵权,请联系删除

   导读


作者按:最近博士毕业论文写完了,这段时间比较闲,准备把我博士毕业论文里比较有意思的一些章节拿出来写成博客,有空就写点,不定期更新。

Softmax交叉熵损失函数应该是目前最常用的分类损失函数了,在大部分文章中,Softmax交叉熵损失函数都是从概率角度来解释的(请读者自行搜索),本文将尝试从最优化的角度来推导出Softmax交叉熵损失函数,希望能够启发出更多的研究思路。

   从最优化的角度看Softmax损失函数

 

一般而言,最优化的问题通常需要构造一个目标函数,然后寻找能够使目标函数取得最大/最小值的方法。目标函数往往难以优化,所以有了各种relax、smooth的方法,例如使用L1范数取代L0范数、使用sigmoid取代阶跃函数等等。

那么我们就要思考一个问题:使用神经网络进行多分类(假设为  类)时的目标函数是什么?神经网络的作用是学习一个非线性函数  ,将输入转换成我们希望的输出。这里我们不考虑网络结构,只考虑分类器(也就是损失函数)的话,最简单的方法莫过于直接输出一维的类别序号  。而这个方法的缺点显而易见:我们事先并不知道这些类别之间的关系,而这样做默认了相近的整数的类是相似的,为什么第2类的左右分别是第1类和第3类,也许第2类跟第5类更为接近呢?

为了解决这个问题,可以将各个类别的输出独立开来,不再只输出1个数而是输出  个分数(某些文章中叫作logit[1],但我感觉这个词用得没什么道理,参见评论),每个类别占据一个维度,这样就没有谁与谁更近的问题了。那么如果让一个样本的真值标签(ground-truth label)所对应的分数比其他分数更大,就可以通过比较  个分数的大小来判断样本的类别了。这里沿用我的论文[2]使用的名词,称真值标签对应的类别分数为目标分数(target score),其他的叫非目标分数(non-target score)。

这样我们就得到了一个优化目标:

输出C个分数,使目标分数比非目标分数更大。

换成数学描述,设  、 为真值标签的序号,那优化目标即为:

 。

得到了目标函数之后,就要考虑优化问题了。我们可以给  一个负的梯度,给其他所有 一个正的梯度,经过梯度下降法,即可使  升高而  下降。为了控制整个神经网络的幅度,不可以让  无限地上升或下降,所以我们利用max函数,让在  刚刚超过  时就停止上升:

 。

然而这样做往往会使模型的泛化性能比较差,我们在训练集上才刚刚让 超过 ,那测试集很可能就不会超过。借鉴svm里间隔的概念,我们添加一个参数,让  比  大过一定的数值才停止:

 。

这样我们就推导出了hinge loss...唔,好像跑题了,我们本来不是要说Softmax的么...不过既然跑题了就多说点,为什么hinge loss在SVM时代大放异彩,但在神经网络时代就不好用了呢?主要就是因为svm时代我们用的是二分类,通过使用一些小技巧比如1 vs 1、1 vs n等方式来做多分类问题。而如论文[3]这样直接把hinge loss应用在多分类上的话,当类别数  特别大时,会有大量的非目标分数得到优化,这样每次优化时的梯度幅度不等且非常巨大,极易梯度爆炸。

其实要解决这个梯度爆炸的问题也不难,我们把优化目标换一种说法:

输出C个分数,使目标分数比最大的非目标分数更大。

跟之前相比,多了一个限制词“最大的”,但其实我们的目标并没有改变,“目标分数比最大的非目标分数更大”实际上等价于“目标分数比所有非目标分数更大”。这样我们的损失函数就变成了:

 。

在优化这个损失函数时,每次最多只会有一个+1的梯度和一个-1的梯度进入网络,梯度幅度得到了限制。但这样修改每次优化的分数过少,会使得网络收敛极其缓慢,这时就又要祭出smooth大法了。那么max函数的smooth版是什么?有同学会脱口而出:softmax!恭喜你答错了...

这里出现了一个经典的歧义,softmax实际上并不是max函数的smooth版,而是one-hot向量(最大值为1,其他为0)的smooth版。其实从输出上来看也很明显,softmax的输出是个向量,而max函数的输出是一个数值,不可能直接用softmax来取代max。max函数真正的smooth版本是LogSumExp函数。

使用LogSumExp函数取代max函数:

 ,

LogSumExp函数的导数恰好为softmax函数:

 。

经过这一变换,给予非目标分数的1的梯度将会通过LogSumExp函数传播给所有的非目标分数,各个非目标分数得到的梯度是通过softmax函数进行分配的,较大的非目标分数会得到更大的梯度使其更快地下降。这些非目标分数的梯度总和为1,目标分数得到的梯度为-1,总和为0,绝对值和为2,这样我们就有效地限制住了梯度的总幅度。

LogSumExp函数值是大于等于max函数值的,而且等于取到的条件也是非常苛刻的(具体情况还是得看我的博士论文,这里公式已经很多了,再写就没法看了),所以使用LogSumExp函数相当于变相地加了一定的  。但这往往还是不够的,我们可以选择跟hinge loss一样添加一个  ,那样效果应该也会不错,不过softmax交叉熵损失走的是另一条路:继续smooth。

注意到ReLU函数  也有一个smooth版,即softplus函数  。使用softplus函数之后,即使  超过了LogSumExp函数,仍会得到一点点梯度让  继续上升,这样其实也是变相地又增加了一点  ,使得泛化性能有了一定的保障。替换之后就可以得到:

这个就是大家所熟知的softmax交叉熵损失函数了。在经过两步smooth化之后,我们将一个难以收敛的函数逐步改造成了softmax交叉熵损失函数,解决了原始的目标函数难以优化的问题。从这个推导过程中我们可以看出smooth化不仅可以让优化更畅通,而且还变相地在类间引入了一定的间隔,从而提升了泛化性能。

至于如何利用这个推导来对损失函数进行修改和一些进一步的分析,未完待续...

好消息! 

小白学视觉知识星球

开始面向外开放啦👇👇👇




下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲
小白学视觉公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲
小白学视觉公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群


欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~



浏览 12
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报