Pandas一行代码绘制26种美图

AI入门学习

共 6550字,需浏览 14分钟

 ·

2021-09-03 17:47

本文目录
1、单组折线图2、多组折线图3、单组条形图4、多组条形图5、堆积条形图6、水平堆积条形图7、直方图8、分面直方图9、箱图10、面积图11、堆积面积图12、散点图13、单组饼图14、多组饼图15、分面图16、hexbin图17、andrews_curves图18、核密度图19、parallel_coordinates图20、autocorrelation_plot图21、radviz图22、bootstrap_plot图23、子图(subplot)24、子图任意排列25、图中绘制数据表格27、更多pandas可视化精进资料

pandas可视化主要依赖下面两个函数:

  • pandas.DataFrame.plot

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.plot.html?highlight=plot#pandas.DataFrame.plot

  • pandas.Series.plot

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.plot.html?highlight=plot#pandas.Series.plot
可绘制下面几种图,注意Dataframe和Series的细微差异:'area', 'bar', 'barh', 'box', 'density', 'hexbin', 'hist', 'kde', 'line', 'pie', 'scatter'导入依赖包

import matplotlib.pyplot as plt 
import numpy as np
import pandas as pd
from pandas import DataFrame,Series
plt.style.use('dark_background')#设置绘图风格

1、单组折线图

np.random.seed(0)#使得每次生成的随机数相同
ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000))
ts1 = ts.cumsum()#累加
ts1.plot(kind="line")#默认绘制折线图

2、多组折线图

np.random.seed(0)
df = pd.DataFrame(np.random.randn(10004), index=ts.index, columns=list("ABCD"))
df = df.cumsum()
df.plot()#默认绘制折线图

3、单组条形图

df.iloc[5].plot(kind="bar")

4、多组条形图

df2 = pd.DataFrame(np.random.rand(104), columns=["a""b""c""d"])
df2.plot.bar()

5、堆积条形图

df2.plot.bar(stacked=True)

6、水平堆积条形图

df2.plot.barh(stacked=True)

7、直方图

df4 = pd.DataFrame(
    {
        "a": np.random.randn(1000) + 1,
        "b": np.random.randn(1000),
        "c": np.random.randn(1000) - 1,
    },
    columns=["a""b""c"],
)
df4.plot.hist(alpha=0.8)

8、分面直方图

df.diff().hist(color="r", alpha=0.9, bins=50)

9、箱图

df = pd.DataFrame(np.random.rand(105), columns=["A""B""C""D""E"])
df.plot.box()

10、面积图

df = pd.DataFrame(np.random.rand(104), columns=["a""b""c""d"])
df.plot.area()

11、堆积面积图

df.plot.area(stacked=False)

12、散点图

ax = df.plot.scatter(x="a", y="b", color="r", label="Group 1",s=90)
df.plot.scatter(x="c", y="d", color="g", label="Group 2", ax=ax,s=90)

13、单组饼图

series = pd.Series(3 * np.random.rand(4), index=["a""b""c""d"], name="series")
series.plot.pie(figsize=(66))

14、多组饼图

df = pd.DataFrame(
    3 * np.random.rand(42), index=["a""b""c""d"], columns=["x""y"]
)
df.plot.pie(subplots=True, figsize=(84))

15、分面图

import matplotlib as mpl
mpl.rc_file_defaults()
plt.style.use('fivethirtyeight')
from pandas.plotting import scatter_matrix
df = pd.DataFrame(np.random.randn(10004), columns=["a""b""c""d"])
scatter_matrix(df, alpha=0.2, figsize=(66), diagonal="kde")
plt.show()

16、hexbin图

df = pd.DataFrame(np.random.randn(10002), columns=["a""b"])
df["b"] = df["b"] + np.arange(1000)
df.plot.hexbin(x="a", y="b", gridsize=25)

17、andrews_curves图

from pandas.plotting import andrews_curves
mpl.rc_file_defaults()
data = pd.read_csv("iris.data.txt")
plt.style.use('dark_background')
andrews_curves(data, "Name")

18、核密度图

ser = pd.Series(np.random.randn(1000))
ser.plot.kde()

19、parallel_coordinates图

from pandas.plotting import parallel_coordinates
data = pd.read_csv("iris.data.txt")
plt.figure()
parallel_coordinates(data, "Name")

20、autocorrelation_plot图

from pandas.plotting import autocorrelation_plot
plt.figure();
spacing = np.linspace(-9 * np.pi, 9 * np.pi, num=1000)
data = pd.Series(0.7 * np.random.rand(1000) + 0.3 * np.sin(spacing))
autocorrelation_plot(data)

21、radviz图

from pandas.plotting import radviz
data = pd.read_csv("iris.data.txt")
plt.figure()
radviz(data, "Name")

22、bootstrap_plot图

from pandas.plotting import bootstrap_plot
data = pd.Series(np.random.rand(1000))
bootstrap_plot(data, size=50, samples=500, color="grey")

23、子图(subplot)

df = pd.DataFrame(np.random.randn(10004), index=ts.index, columns=list("ABCD"))
df.plot(subplots=True, figsize=(66))

24、子图任意排列

df.plot(subplots=True, layout=(23), figsize=(66), sharex=False)
fig, axes = plt.subplots(44, figsize=(99))
plt.subplots_adjust(wspace=0.5, hspace=0.5)
target1 = [axes[0][0], axes[1][1], axes[2][2], axes[3][3]]
target2 = [axes[3][0], axes[2][1], axes[1][2], axes[0][3]]
df.plot(subplots=True, ax=target1, legend=False, sharex=False, sharey=False);
(-df).plot(subplots=True, ax=target2, legend=False, sharex=False, sharey=False)

25、图中绘制数据表格

from pandas.plotting import table
mpl.rc_file_defaults()
#plt.style.use('dark_background')
fig, ax = plt.subplots(11)
table(ax, np.round(df.describe(), 2), loc="upper right", colWidths=[0.20.20.2]);
df.plot(ax=ax, ylim=(02), legend=None);

27、更多pandas可视化精进资料

https://pandas.pydata.org/pandas-docs/stable/user_guide/cookbook.html#cookbook-plotting

-END-

推荐阅读:

Pandas中的宝藏函数-transform

Pandas中的宝藏函数-map

Pandas中的宝藏函数-apply

Pandas中的宝藏函数-applymap

Pandas中的宝藏函数-agg()

一文搞懂Pandas数据排序

Pandas缺失值处理-判断和删除

一网打尽Pandas中的各种索引 iloc,loc,ix,iat,at,直接索引


一、Number(数字)
全面掌握Python基础,这一篇就够了,建议收藏
Python基础之数字(Number)超级详解
Python随机模块22个函数详解
Python数学math模块55个函数详解
二、String(字符串)
Python字符串的45个方法详解
Pandas向量化字符串操作
三、List(列表)
超级详解系列-Python列表全面解析
Python轻量级循环-列表推导式
四、Tuple(元组)
Python的元组,没想象的那么简单
五、Set(集合)
全面理解Python集合,17个方法全解,看完就够了
六、Dictionary(字典)
Python字典详解-超级完整版
七、内置函数
Python初学者必须吃透这69个内置函数!
八、正则模块
Python正则表达式入门到入魔
笔记 | 史上最全的正则表达式
八、系统操作
Python之shutil模块11个常用函数详解
Python之OS模块39个常用函数详解
九、进阶模块
【万字长文详解】Python库collections,让你击败99%的Pythoner
高手如何在Python中使用collections模块

扫描关注本号↓

浏览 28
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报