【图解算法】螺旋矩阵、旋转矩阵、“之”型输出、矩阵找数

共 846字,需浏览 2分钟

 ·

2019-12-30 23:26

这几道矩阵相关的题目比较考察全局观,如果陷在思考局部点如何移动,那么在面试中将很难快速解出题目。

问题描述

  1. 转圈打印矩阵。【leetcode-54-螺旋矩阵】

  2. 旋转正方形矩阵。【leetcode-48-旋转图像】

  3. “之”字型打印矩阵。

  4. 在行列都排好序的矩阵中找数。【特定的数据】

转圈打印矩阵

【题目】 给定一个整型矩阵Matrix,请按照顺时针转圈的方式打印它。例如:

85a33d3bdb75c6b463b7b599b759c539.webp实际上存储结构为二维数组

打印结果为:

1,2,3,4,8,12,16,15,14,13,9, 5,6,7,11,10
58972473975d693dee8a81a37f1ce2c7.webp转圈打印

【要求】 额外空间复杂度为O(1)。

【解法说明】

如果我们将眼光局限于坐标每次该如何移动,如何判断矩阵中哪些点已经输出,哪些点还没有输出,那么你就是进坑里了,这种方法不是不行,但是在面试的场景下,扣各种边界会导致你非常容易出错。那么有什么办法可以快速解决呢?其实很简单,从全局来看,我们实际上是在绘制一个又一个的矩形边界

e5cf35ee7c4fcc8341295218c5df27b9.webp将问题转化为绘制矩形边界

是不是觉得问题一下子简单了很多,我们只要分别打印四个边界,就能打印出一个矩形;接下来我们考虑外层和内层如何衔接:

如下图所示,我们每次绘制某一边界时(如矩形的上边界),不要把最后一个点绘制了,而是作为下一个边界的起点,那么最终结束位置在5,与下一圈的6正好衔接:

00bd4dc210f0ce1c5c24c2543e085f09.webp内外层衔接

看到这里大家想必已经知道怎么做了,是的,我们只需控制左上角和右下角两个点的坐标,然后每跑完一圈,坐标进行相应的增加或减少即可:

cc20f178adf359a9eb8e8f7bc7bd6324.webp控制对角坐标

到这里,思路已经基本出现了,我们在外层写一个循环控制对角坐标的变化,内部则是打印一个矩形的外边界的函数:

void circlePrint(vector<vector<int>> &matrix) {
    if (matrix.empty()) return// 空数组判断
    int a = 0, b = 0, c = matrix.size() - 1, d = matrix[0].size() - 1;
    while (a <= c && b <= d) {
        edgePrint(a++, b++, c--, d--, matrix); // 打印(a,b)和(c,d)所在的矩形边界
    }
}

关于打印矩形边界,还需要考虑两种边界情况:

b055bc2806a723a72aa7abfc185821ea.webp打印矩阵的边界考虑

至此,我们就可以很轻松地写出代码了:

void edgePrint(int a, int b, int c, int d, vector<vector<int>> &matrix) {
    if (a == c) { // only one row
        for (int j = b; j <= d; ++j) {
            cout << matrix[a][j] << " ";
        }
    } else if (b == d) { // only one column
        for (int i = a; i <= c; ++i) {
            cout << matrix[i][d] << " ";
        }
    } else {
        for (int j = b; j < d; ++j) { // print up edge
            cout << matrix[a][j] << " ";
        }
        for (int i = a; i < c; ++i) { // print right edge
            cout << matrix[i][d] << " ";
        }
        for (int j = d; j > b; --j) { // print down edge
            cout << matrix[c][j] << " ";
        }
        for (int i = c; i > a; --i) { // print left edge
            cout << matrix[i][b] << " ";
        }
    }
}

旋转正方形矩阵

【题目】 给定一个整型正方形矩阵 Matrix,请把该矩阵调整成顺时针旋转90度的样子。

8a313134ac5bdcc121bdf9ec861ac546.webp原地顺时针旋转90度

【要求】 额外空间复杂度为O(1)。

【解法说明】注意到题目要求我们的空间复杂度为O(1),因此,我们不能借助辅助矩阵,只能原地调整。咋一看好像无从下手,但只要使用我们前面提到过的全局思想,我们可以首先将问题拆解为将一个矩形边界旋转90度

94b9c53edaf15995af77f8a0a0e8c67d.webp化简为边界旋转的问题

代码如下:

void rotateMatrix(vector<vector<int>> &matrix) {
    int a = 0, b = 0, c = matrix.size() - 1, d = matrix[0].size() - 1;
    while (a <= c && b <= d) {
        rotateEdge(a++, b++, c--, d--, matrix); // 旋转指定对角所在正方形的边界
    }
}

接下来,我们要解决的就是如何将一个矩形边界旋转的问题了。

我们先考虑四个角:

1e282b072acb6ed6344c121b84d3c3c9.webp边界旋转的四个角

再考虑第二个点:

fffa268ac6db03db27098d1595f4eb3c.webp旋转边界的第二个点

聪明的朋友可能已经发现了,这个跟遍历某一个边界的一边非常像,我们原地交换四个点只需要5步,再加上遍历某一边,旋转一个边界就此完成。

代码如下:

void rotateEdge(int a, int b, int c, int d, vector<vector<int>> &matrix) {
    for (int i = 0; i < d-b; ++i) { // 每一行要剔除最后一个点
        int temp = matrix[a][b + i];                 // 暂存左上角的点
        matrix[a][b + i] = matrix[c - i][b]; // 把左下角的点放到左上角 
        matrix[c - i][b] = matrix[c][d - i]; // 把右下角的点放到左下角
        matrix[c][d - i] = matrix[a + i][d]; // 把右上角的点放到右下角
        matrix[a + i][d] = temp;                         // 把暂存的左上角的点放到右上角
    }
}

“之”字型打印矩阵

【题目】 给定一个矩阵matrix,按照“之”字形的方式打印这 个矩阵,例如:

a3f6b082dafb5273fad2602f2c1934b7.webp“之”字型打印

“之”字形打印的结果为:

1,2,5,9,6,3,4,7,10,11, 8,12

【要求】 额外空间复杂度为O(1)。

【解法说明】和之前的题目类似,一旦我们陷于考虑局部的坐标如何变换,就会陷入细节边界之中,难以快速解决这道题目。我们换个思路,将整个过程切分为:给定两个对角点坐标,遍历对角线,然后寻找两个对角点坐标的变化规律。

给定两个对焦点坐标,遍历该对角线,实现起来非常简单:

void printDiagonal(int a, int b, int c, int d, vector<vector<int>> &matrix) {
    while (a >= c && b <= d) { // 从左下到右上的遍历方式
          cout << matrix[a--][b++] << " ";
    }
}
61e87f458b9470b87226b0a4d8c54398.webp遍历对角线

图中的(a, b)为对角线的左下角顶点,其中a、b均是变量,从左到右分别为每次变换的位置;一开始(a, b)(c, d)都是点1,即matrix[0][0];我们观察两个点的变换轨迹,可以发现,(a, b)先向下走,到底部再向右走;而(c, d)先向右走,到达最右边才向下走。

与此同时,每完成一次对角线遍历,我们发现,遍历的方向会发生改变,因此我们使用一个bool类型的isUp来记录状态。

因此,对角线函数需要进行修改:

void printDiagonal(int a, int b, int c, int d, vector<vector<int>> &matrix, bool isUp) {
    if (isUp) {
        while (a >= c && b <= d) {
            cout << matrix[a--][b++] << " ";
        }
    } else {
        while (a >= c && b <= d) {
            cout << matrix[c++][d--] << " ";
        }
    }
}

遍历所有对角线:

void ZigZagPrint(vector<vector<int>> &matrix) {
    bool isUp = true;
    int a = 0, b = 0, c = 0, d = 0;
    while (c != matrix.size()) { // c 如果为 n,说明右上角的对角线顶点已经到达矩阵的右下角,所有对角线都被遍历了
        printDiagonal(a, b, c, d, matrix, isUp);
        isUp = !isUp;
        b = (a == matrix.size() - 1) ? b + 1 : b; // 注意,我们要先更新b,然后才更新a
        a = (a == matrix.size() - 1) ? a : a + 1;
        c = (d == matrix[0].size() - 1) ? c + 1 : c; //同样的,先更新c,再更新d
        d = (d == matrix[0].size() - 1) ? d : d + 1;
    }
}

在行列都排好序的矩阵中找数

【题目】 给定一个有N*M整型矩阵Matrix和一个整数K, Matrix的每一行和每一 列都是排好序的。实现一个函数,判断K 是否在 Matrix中。例如:

04dcf1feefea797fc1086fb85e0a5889.webp从排好序的矩阵中找数

如果K为5,返回true;如果K为10,返回false。
【要求】 时间复杂度为O(N+M),额外空间复杂度为O(1)。

【解法说明】如果我们遍历完整个矩阵,需要O(N^2),而题目中要求O(N+M)的复杂度,因此我们就需要根据特殊的数据布局来考虑更优的解法。懂得二分法的朋友肯定知道,我们在一个排好序的数组中找一个数,从中间找起是最快的;这里也是类似,不过这里的中间在哪里呢?

事实上,考虑数据的分布,左上角必然是最小值,右下角必然是最大值,而中间线,正好在左下角到右上角的对角线上:

c3c6e9db4190c42f6506ded3b554774d.webp从中间线出发

假设我们找K=5,从右上角开始,发现4 < 5,所以向下找,为什么?因为行列都是按顺序排好的,4左边的数都是比4小的,既然5比4大,那么在左边就不可能找到5了:

bccfefbaddcd688dab22c8bdc403bf48.webp4的左边已经不存在5了

接下来我们继续比较,发现8 > 5,所以向左找,因为下面不可能有5了:

2ed80c61c9971b342c1b2cbd42f10ee4.webp8的下面不可能存在5

按照上面的方式,我们完成搜索:

8b66ea12a90e4eb74eecf7af0c498f4e.webp找到5,返回true

我们仔细考虑下过程,即使K在左下角,我们从右上角开始找,那么最终耗费的时间也只是O(N+M)N 为宽度,M 为长度

代码实现:

bool findKInSortedMatrix(vector<vector<int>> &matrix, int k) {
    int a = 0, b = matrix[0].size() - 1;
    while (a <= matrix.size() - 1 && b >= 0) {
        if (matrix[a][b] == k) { // found
            return true;
        } else if (matrix[a][b] < k) { // 如果当前点小于 K,向下走
            a++;
        } else { // 如果当前点大于 K,向左走
            b--;
        }
    }
    return false// not found
}

其他算法推荐:二分法

1、二分法题型小结
2、两道看似简单的面试高频算法题
3、如何理解二分查找?生活中还能用来设计骗局?
4、二分搜索只能用来查找元素吗?

推荐阅读

全部文章详细分类与整理(算法+数据结构+计算机基础)


【吐血整理】百度云珍藏了四年书籍+临时搜索,帅地给大家整理了几百本常用电子书(附下载链接)!!



浏览 136
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报