详解增强算术赋值:“-=”操作是怎么实现的?
? “Python猫” ,一个值得加星标的公众号
序言
本文是 Python语法糖 系列文章之一。最新的源代码可以在 desugar 项目中找到(https://github.com/brettcannon/desugar)。
介绍
Python 有一种叫做增强算术赋值
(augmented arithmetic assignment)的东西。可能你不熟悉这个叫法,其实就是在做数学运算的同时进行赋值,例如 a -= b 就是减法的增强算术赋值。
增强赋值是在 Python 2.0 版本中 加入进来的。(译注:在 PEP-203 中引入)
剖析 -=
因为 Python 不允许覆盖式赋值,所以相比其它有特殊/魔术方法的操作,它实现增强赋值的方式可能跟你想象的不完全一样。
首先,要知道a -= b
在语义上与 a = a-b
相同。但也要意识到,如果你预先知道要将一个对象赋给一个变量名,相比a - b
的盲操作,就可能会更高效。
例如,最起码的好处是可以避免创建一个新对象:如果可以就地修改一个对象,那么返回 self,就比重新构造一个新对象要高效。
因此,Python 提供了一个__isub__() 方法。如果它被定义在赋值操作的左侧(通常称为 lvalue),则会调用右侧的值(通常称为 rvalue )。所以对于a -= b
,就会尝试去调用 a.__isub__(b)。
如果调用的结果是 NotImplemented,或者根本不存在结果,那么 Python 会退回到常规的二元算术运算:a - b
。(译注:作者关于二元运算的文章,译文在此)
最终无论用了哪种方法,返回值都会被赋值给 a。
下面是简单的伪代码,a -= b
被分解成:
# 实现 a -= b 的伪代码
if hasattr(a, "__isub__"):
_value = a.__isub__(b)
if _value is not NotImplemented:
a = _value
else:
a = a - b
del _value
else:
a = a - b
归纳这些方法
由于我们已经实现了二元算术运算,因此归纳增强算术运算并不太复杂。
通过传入二元算术运算函数,并做一些自省(以及处理可能发生的 TypeError),它可以被漂亮地归纳成:
def _create_binary_inplace_op(binary_op: _BinaryOp) -> Callable[[Any, Any], Any]:
binary_operation_name = binary_op.__name__[2:-2]
method_name = f"__i{binary_operation_name}__"
operator = f"{binary_op._operator}="
def binary_inplace_op(lvalue: Any, rvalue: Any, /) -> Any:
lvalue_type = type(lvalue)
try:
method = debuiltins._mro_getattr(lvalue_type, method_name)
except AttributeError:
pass
else:
value = method(lvalue, rvalue)
if value is not NotImplemented:
return value
try:
return binary_op(lvalue, rvalue)
except TypeError as exc:
# If the TypeError is due to the binary arithmetic operator, suppress
# it so we can raise the appropriate one for the agumented assignment.
if exc._binary_op != binary_op._operator:
raise
raise TypeError(
f"unsupported operand type(s) for {operator}: {lvalue_type!r} and {type(rvalue)!r}"
)
binary_inplace_op.__name__ = binary_inplace_op.__qualname__ = method_name
binary_inplace_op.__doc__ = (
f"""Implement the augmented arithmetic assignment `a {operator} b`."""
)
return binary_inplace_op
这使得定义的 -= 支持 _create_binary_inplace_op(__ sub__),且可以推断出其它内容:函数名、调用什么 __i*__ 函数,以及当二元算术运算出问题时,该调用哪个可调用对象。
我发现几乎没有人使用**=
在写本文的代码时,我碰上了 **= 的一个奇怪的测试错误。在所有确保 __pow__ 会被适当地调用的测试中,有个测试用例对于 Python 标准库中的operator
模块却是失败。
我的代码通常没问题,如果代码与 CPython 的代码之间存在差异,通常会意味着是我哪里出错了。
但是,无论我多么仔细地排查代码,我都无法定位出为什么我的测试会通过,而标准库则失败。
我决定深入地了解 CPython 内部发生了什么。从反汇编字节码开始:
>>> def test(): a **= b
...
>>> import dis
>>> dis.dis(test)
1 0 LOAD_FAST 0 (a)
2 LOAD_GLOBAL 0 (b)
4 INPLACE_POWER
6 STORE_FAST 0 (a)
8 LOAD_CONST 0 (None)
10 RETURN_VALUE
通过它,我找到了在 eval 循环中的INPLACE_POWER
:
case TARGET(INPLACE_POWER): {
PyObject *exp = POP();
PyObject *base = TOP();
PyObject *res = PyNumber_InPlacePower(base, exp, Py_None);
Py_DECREF(base);
Py_DECREF(exp);
SET_TOP(res);
if (res == NULL)
goto error;
DISPATCH();
}
然后找到PyNumber_InPlacePower()
:
PyObject *
PyNumber_InPlacePower(PyObject *v, PyObject *w, PyObject *z)
{
if (v->ob_type->tp_as_number &&
v->ob_type->tp_as_number->nb_inplace_power != NULL) {
return ternary_op(v, w, z, NB_SLOT(nb_inplace_power), "**=");
}
else {
return ternary_op(v, w, z, NB_SLOT(nb_power), "**=");
}
}
松了口气~代码显示如果定义了__ipow__,则会调用它,但是只在没有__ipow__ 时,才会调用__pow__。
然而,正确的做法应该是:如果调用__ipow__ 时出问题,返回了 NotImplemented 或者根本不存在返回,那么就应该调用 __pow__ 和__rpow__。
换句话说,当存在__ipow__时,以上代码会意外地跳过 a**b 的后备语义!
实际上,大约11个月前,这个问题被部分地发现,并提交了 bug。我修复了该问题,并在 python-dev 上作了说明。
截至目前,这似乎会在 Python 3.10 中修复,我们还需要在 3.8 和 3.9 的文档中添加关于 **= 有 bug 的通知(该问题可能很早就有了,但较旧的 Python 版本已处于仅安全维护模式,因此文档不会变更)。
修复的代码很可能不会被移植,因为它是语义上的变化,并且很难判断是否有人意外地依赖了有问题的语义。但是这个问题花了很长时间才被注意到,这就表明 **= 的使用并不广泛,否则问题早就被发现了。
优质文章,推荐阅读:
详解 Python 的二元算术运算,为什么说减法只是语法糖?