Pytorch实现28个视觉Transformer,开源库 timm 了解一下!附代码

AI算法与图像处理

共 31356字,需浏览 63分钟

 ·

2021-02-21 14:00

点击上方AI算法与图像处理”,选择加"星标"或“置顶”

重磅干货,第一时间送达

作者丨科技猛兽
审稿丨邓富城
编辑丨极市平台

极市导读

 

本文将介绍一个优秀的PyTorch开源库——timm库,并对其中的vision transformer.py代码进行了详细解读。

Transformer 架构早已在自然语言处理任务中得到广泛应用,但在计算机视觉领域中仍然受到限制。在计算机视觉领域,目前已有大量工作表明模型对 CNN 的依赖不是必需的,当直接应用于图像块序列时,Transformer 也能很好地执行图像分类任务。
本文将简要介绍了优秀的 PyTorch Image Model 库:timm库。与此同时,将会为大家详细介绍其中的视觉Transformer代码以及一个优秀的视觉Transformer 的PyTorch实现,以帮助大家更快地开展相关实验。

什么是timm库?

PyTorchImageModels,简称timm,是一个巨大的PyTorch代码集合,包括了一系列:

  • image models
  • layers
  • utilities
  • optimizers
  • schedulers
  • data-loaders / augmentations
  • training / validation scripts

旨在将各种SOTA模型整合在一起,并具有复现ImageNet训练结果的能力。

timm库作者是来自加拿大温哥华的Ross Wightman

作者github链接:

https://github.com/rwightman

timm库链接:

https://github.com/rwightman/pytorch-image-models

所有的PyTorch模型及其对应arxiv链接如下:


  • Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370

  • CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929

  • DeiT (Vision Transformer) - https://arxiv.org/abs/2012.12877

  • DenseNet - https://arxiv.org/abs/1608.06993

  • DLA - https://arxiv.org/abs/1707.06484

  • DPN (Dual-Path Network) - https://arxiv.org/abs/1707.01629

  • EfficientNet (MBConvNet Family)

  • EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252

  • EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665

  • EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946

  • EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html

  • FBNet-C - https://arxiv.org/abs/1812.03443

  • MixNet - https://arxiv.org/abs/1907.09595

  • MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626

  • MobileNet-V2 - https://arxiv.org/abs/1801.04381

  • Single-Path NAS - https://arxiv.org/abs/1904.02877

  • GPU-Efficient Networks - https://arxiv.org/abs/2006.14090

  • HRNet - https://arxiv.org/abs/1908.07919

  • Inception-V3 - https://arxiv.org/abs/1512.00567

  • Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261

  • MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244

  • NASNet-A - https://arxiv.org/abs/1707.07012

  • NFNet-F - https://arxiv.org/abs/2102.06171

  • NF-RegNet / NF-ResNet - https://arxiv.org/abs/2101.08692

  • PNasNet - https://arxiv.org/abs/1712.00559

  • RegNet - https://arxiv.org/abs/2003.13678

  • RepVGG - https://arxiv.org/abs/2101.03697

  • ResNet/ResNeXt

  • ResNet (v1b/v1.5) - https://arxiv.org/abs/1512.03385

  • ResNeXt - https://arxiv.org/abs/1611.05431

  • 'Bag of Tricks' / Gluon C, D, E, S variations - https://arxiv.org/abs/1812.01187

  • Weakly-supervised (WSL) Instagram pretrained / ImageNet tuned ResNeXt101 - https://arxiv.org/abs/1805.00932

  • Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet/ResNeXts - https://arxiv.org/abs/1905.00546

  • ECA-Net (ECAResNet) - https://arxiv.org/abs/1910.03151v4

  • Squeeze-and-Excitation Networks (SEResNet) - https://arxiv.org/abs/1709.01507

  • Res2Net - https://arxiv.org/abs/1904.01169

  • ResNeSt - https://arxiv.org/abs/2004.08955

  • ReXNet - https://arxiv.org/abs/2007.00992

  • SelecSLS - https://arxiv.org/abs/1907.00837

  • Selective Kernel Networks - https://arxiv.org/abs/1903.06586

  • TResNet - https://arxiv.org/abs/2003.13630

  • Vision Transformer - https://arxiv.org/abs/2010.11929

  • VovNet V2 and V1 - https://arxiv.org/abs/1911.06667

  • Xception - https://arxiv.org/abs/1610.02357

  • Xception (Modified Aligned, Gluon) - https://arxiv.org/abs/1802.02611

  • Xception (Modified Aligned, TF) - https://arxiv.org/abs/1802.02611


timm库特点

所有的模型都有默认的API:

  • accessing/changing the classifier - get_classifier and reset_classifier
  • 只对features做前向传播 - forward_features

所有模型都支持多尺度特征提取 (feature pyramids) (通过create_model函数):

  • create_model(name, features_only=True, out_indices=..., output_stride=...)

out_indices 指定返回哪个feature maps to return, 从0开始,out_indices[i]对应着 C(i + 1) feature level。

output_stride 通过dilated convolutions控制网络的output stride。大多数网络默认 stride 32 。

所有的模型都有一致的pretrained weight loader,adapts last linear if necessary。

训练方式支持:

  • NVIDIA DDP w/ a single GPU per process, multiple processes with APEX present (AMP mixed-precision optional)
  • PyTorch DistributedDataParallel w/ multi-gpu, single process (AMP disabled as it crashes when enabled)
  • PyTorch w/ single GPU single process (AMP optional)

动态的全局池化方式可以选择: average pooling, max pooling, average + max, or concat([average, max]),默认是adaptive average。

Schedulers:

Schedulers 包括step,cosinew/ restarts,tanhw/ restarts,plateau 。

Optimizer:

  • rmsprop_tf adapted from PyTorch RMSProp by myself. Reproduces much improved Tensorflow RMSProp behaviour.
  • radam by Liyuan Liu (https://arxiv.org/abs/1908.03265)
  • novograd by Masashi Kimura (https://arxiv.org/abs/1905.11286)
  • lookahead adapted from impl by Liam (https://arxiv.org/abs/1907.08610)
  • fused optimizers by name with NVIDIA Apex installed
  • adamp and sgdp by Naver ClovAI (https://arxiv.org/abs/2006.08217)
  • adafactor adapted from FAIRSeq impl (https://arxiv.org/abs/1804.04235)
  • adahessian by David Samuel (https://arxiv.org/abs/2006.00719)

timm库 vision_transformer.py代码解读

代码来自:

https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py

对应的论文是ViT,是除了官方开源的代码之外的又一个优秀的PyTorch implement。

An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

https://arxiv.org/abs/2010.11929

另一篇工作DeiT也大量借鉴了timm库这份代码的实现:

Training data-efficient image transformers & distillation through attention

Training data-efficient image transformers & distillation through attention

https://arxiv.org/abs/2012.12877

vision_transformer.py:

代码中定义的变量的含义如下:

img_size:tuple 类型,里面是int类型,代表输入的图片大小,默认是 224
patch_size:tuple 类型,里面是int类型,代表Patch的大小,默认是 16
in_chans:int 类型,代表输入图片的channel数,默认是3
num_classes:int 类型classification head的分类数,比如CIFAR100就是100,默认是 1000
embed_dim:int 类型Transformer的embedding dimension,默认是 768
depth:int  类型,Transformer的Block的数量,默认是 12
num_heads:int 类型,attention heads的数量,默认是12
mlp_ratio:int 类型,mlp hidden dim/embedding dim的值,默认是 4
qkv_bias:bool 类型,attention模块计算qkv时需要bias吗,默认是 True
qk_scale: 一般设置成 None 就行。
drop_rate:float 类型,dropout rate,默认是 0
attn_drop_rate:float 类型,attention模块的dropout rate,默认是 0
drop_path_rate:float 类型,默认是 0
hybrid_backbone:nn.Module 类型,在把图片转换成Patch之前,需要先通过一个Backbone吗?默认是 None
如果是None,就直接把图片转化成Patch。
如果不是None,就先通过这个Backbone,再转化成Patch。
norm_layer:nn.Module 类型,归一化层类型,默认是 None

1. 导入必要的库和模型

import mathimport loggingfrom functools import partialfrom collections import OrderedDict
import torchimport torch.nn as nnimport torch.nn.functional as F
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STDfrom .helpers import load_pretrainedfrom .layers import StdConv2dSame, DropPath, to_2tuple, trunc_normal_from .resnet import resnet26d, resnet50dfrom .resnetv2 import ResNetV2from .registry import register_model
2. 定义一个字典,代表标准的模型,如果需要更改模型超参数只需要改变_cfg
的传入的参数即可。
def _cfg(url='', **kwargs):    return {        'url': url,        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,        'crop_pct': .9, 'interpolation': 'bicubic',        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,        'first_conv': 'patch_embed.proj', 'classifier': 'head',        **kwargs    }

3. default_cfgs代表支持的所有模型,也定义成字典的形式:

vit_small_patch16_224里面的small代表小模型。
ViT的第一步要把图片分成一个个patch,然后把这些patch组合在一起作为对图像的序列化操作,比如一张224 × 224的图片分成大小为16 × 16的patch,那一共可以分成196个。所以这个图片就序列化成了(196, 256)的tensor。所以这里的:
16: 就代表patch的大小。
224: 就代表输入图片的大小。
按照这个命名方式,支持的模型有:vit_base_patch16_224,vit_base_patch16_384等等。

后面的vit_deit_base_patch16_224等等模型代表DeiT这篇论文的模型。

default_cfgs = {    # patch models (my experiments)    'vit_small_patch16_224': _cfg(        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth',    ),
# patch models (weights ported from official Google JAX impl) 'vit_base_patch16_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), ), 'vit_base_patch32_224': _cfg( url='', # no official model weights for this combo, only for in21k mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), 'vit_base_patch16_384': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_384-83fb41ba.pth', input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0), 'vit_base_patch32_384': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p32_384-830016f5.pth', input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0), 'vit_large_patch16_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), 'vit_large_patch32_224': _cfg( url='', # no official model weights for this combo, only for in21k mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), 'vit_large_patch16_384': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_384-b3be5167.pth', input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0), 'vit_large_patch32_384': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth', input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
# patch models, imagenet21k (weights ported from official Google JAX impl) 'vit_base_patch16_224_in21k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth', num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), 'vit_base_patch32_224_in21k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth', num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), 'vit_large_patch16_224_in21k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth', num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), 'vit_large_patch32_224_in21k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth', num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), 'vit_huge_patch14_224_in21k': _cfg( url='', # FIXME I have weights for this but > 2GB limit for github release binaries num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
# hybrid models (weights ported from official Google JAX impl) 'vit_base_resnet50_224_in21k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_224_in21k-6f7c7740.pth', num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.9, first_conv='patch_embed.backbone.stem.conv'), 'vit_base_resnet50_384': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_384-9fd3c705.pth', input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, first_conv='patch_embed.backbone.stem.conv'),
# hybrid models (my experiments) 'vit_small_resnet26d_224': _cfg(), 'vit_small_resnet50d_s3_224': _cfg(), 'vit_base_resnet26d_224': _cfg(), 'vit_base_resnet50d_224': _cfg(),
# deit models (FB weights) 'vit_deit_tiny_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth'), 'vit_deit_small_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth'), 'vit_deit_base_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth',), 'vit_deit_base_patch16_384': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth', input_size=(3, 384, 384), crop_pct=1.0), 'vit_deit_tiny_distilled_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth'), 'vit_deit_small_distilled_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth'), 'vit_deit_base_distilled_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth', ), 'vit_deit_base_distilled_patch16_384': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth', input_size=(3, 384, 384), crop_pct=1.0),}

4. FFN实现:

class Mlp(nn.Module):    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):        super().__init__()        out_features = out_features or in_features        hidden_features = hidden_features or in_features        self.fc1 = nn.Linear(in_features, hidden_features)        self.act = act_layer()        self.fc2 = nn.Linear(hidden_features, out_features)        self.drop = nn.Dropout(drop)
def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x)        return x

5. Attention实现:

在python 3.5以后,@是一个操作符,表示矩阵-向量乘法
A@x 就是矩阵-向量乘法A*x: np.dot(A, x)。

class Attention(nn.Module):    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):        super().__init__()        self.num_heads = num_heads        head_dim = dim // num_heads        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights        self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x)
# x: (B, N, C) return x

6. 包含Attention和Add & Norm的Block实现:

图1:Block类对应结构

不同之处是:
先进行Norm,再Attention;先进行Norm,再通过FFN (MLP)。

class Block(nn.Module):    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):        super().__init__()        self.norm1 = norm_layer(dim)        self.attn = Attention(            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()        self.norm2 = norm_layer(dim)        mlp_hidden_dim = int(dim * mlp_ratio)        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x

7. 接下来要把图片转换成Patch,一种做法是直接把Image转化成Patch,另一种做法是把Backbone输出的特征转化成Patch。

1) 直接把Image转化成Patch:

输入的x的维度是:(B, C, H, W)
输出的PatchEmbedding的维度是:(B, 14*14, 768),768表示embed_dim,14*14表示一共有196个Patches。

class PatchEmbed(nn.Module):    """ Image to Patch Embedding    """    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):        super().__init__()        img_size = to_2tuple(img_size)        patch_size = to_2tuple(patch_size)        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])        self.img_size = img_size        self.patch_size = patch_size        self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2)
# x: (B, 14*14, 768)        return x

2) 把Backbone输出的特征转化成Patch:

输入的x的维度是:(B, C, H, W)
得到Backbone输出的维度是:(B, feature_size, feature_size, feature_dim)
输出的PatchEmbedding的维度是:(B, feature_size, feature_size, embed_dim),一共有feature_size * feature_size个Patches。

class HybridEmbed(nn.Module):    """ CNN Feature Map Embedding    Extract feature map from CNN, flatten, project to embedding dim.    """    def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768):        super().__init__()        assert isinstance(backbone, nn.Module)        img_size = to_2tuple(img_size)        self.img_size = img_size        self.backbone = backbone        if feature_size is None:            with torch.no_grad():                # FIXME this is hacky, but most reliable way of determining the exact dim of the output feature                # map for all networks, the feature metadata has reliable channel and stride info, but using                # stride to calc feature dim requires info about padding of each stage that isn't captured.                training = backbone.training                if training:                    backbone.eval()                o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))                if isinstance(o, (list, tuple)):                    o = o[-1]  # last feature if backbone outputs list/tuple of features                feature_size = o.shape[-2:]                feature_dim = o.shape[1]                backbone.train(training)        else:            feature_size = to_2tuple(feature_size)            if hasattr(self.backbone, 'feature_info'):                feature_dim = self.backbone.feature_info.channels()[-1]            else:                feature_dim = self.backbone.num_features        self.num_patches = feature_size[0] * feature_size[1]        self.proj = nn.Conv2d(feature_dim, embed_dim, 1)
def forward(self, x): x = self.backbone(x) if isinstance(x, (list, tuple)): x = x[-1] # last feature if backbone outputs list/tuple of features x = self.proj(x).flatten(2).transpose(1, 2) return x

8. 以上是ViT所需的所有模块的定义,下面是VisionTransformer 这个类的实现:

8.1 使用这个类时需要传入的变量,其含义已经在本小节一开始介绍。

class VisionTransformer(nn.Module):    """ Vision Transformer
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=None):

8.2 得到分块后的Patch的数量:

super().__init__()self.num_classes = num_classesself.num_features = self.embed_dim = embed_dim  # num_features for consistency with other modelsnorm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
if hybrid_backbone is not None: self.patch_embed = HybridEmbed( hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)else: self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)num_patches = self.patch_embed.num_patches

8.3 class token:

一开始定义成(1, 1, 768),之后再变成(B, 1, 768)。

self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))

8.4 定义位置编码:

self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))

8.5 把12个Block连接起来:

self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay ruleself.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) for i in range(depth)])self.norm = norm_layer(embed_dim)

8.6 表示层和分类头:

表示层输出维度是representation_size,分类头输出维度是num_classes。

# Representation layerif representation_size:    self.num_features = representation_size    self.pre_logits = nn.Sequential(OrderedDict([        ('fc', nn.Linear(embed_dim, representation_size)),        ('act', nn.Tanh())    ]))else:    self.pre_logits = nn.Identity()
# Classifier headself.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

8.7 初始化各个模块:

函数trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.)的目的是用截断的正态分布绘制的值填充输入张量,我们只需要输入均值mean,标准差std,下界a,上界b即可。

self.apply(self._init_weights)表示对各个模块的权重进行初始化。apply函数的代码是:

        for module in self.children():            module.apply(fn)        fn(self)        return self

递归地将fn应用于每个子模块,相当于在递归调用fn,即_init_weights这个函数。
也就是把模型的所有子模块的nn.Linear和nn.LayerNorm层都初始化掉。

trunc_normal_(self.pos_embed, std=.02)trunc_normal_(self.cls_token, std=.02)self.apply(self._init_weights)
def _init_weights(self, m):if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0)

8.8 最后就是整个ViT模型的forward实现:

def forward_features(self, x):    B = x.shape[0]    x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) x = x + self.pos_embed x = self.pos_drop(x)
for blk in self.blocks: x = blk(x)
x = self.norm(x)[:, 0] x = self.pre_logits(x) return x
def forward(self, x): x = self.forward_features(x) x = self.head(x)    return x

9. 下面是Training data-efficient image transformers & distillation through attention这篇论文的DeiT这个类的实现:

整体结构与ViT相似,继承了上面的VisionTransformer类。

class DistilledVisionTransformer(VisionTransformer):

再额外定义以下3个变量:

  • distillation token:dist_token
  • 新的位置编码:pos_embed
  • 蒸馏分类头:head_dist

DeiT相关介绍可以参考:Vision Transformer 超详细解读 (原理分析+代码解读) (三)。

self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))num_patches = self.patch_embed.num_patchesself.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 2, self.embed_dim))self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if self.num_classes > 0 else nn.Identity()

初始化新定义的变量:

trunc_normal_(self.dist_token, std=.02)trunc_normal_(self.pos_embed, std=.02)self.head_dist.apply(self._init_weights)

前向函数:

def forward_features(self, x):    B = x.shape[0]    x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks dist_token = self.dist_token.expand(B, -1, -1) x = torch.cat((cls_tokens, dist_token, x), dim=1)
x = x + self.pos_embed x = self.pos_drop(x)
for blk in self.blocks: x = blk(x)
x = self.norm(x) return x[:, 0], x[:, 1]
def forward(self, x): x, x_dist = self.forward_features(x) x = self.head(x) x_dist = self.head_dist(x_dist) if self.training: return x, x_dist else: # during inference, return the average of both classifier predictions return (x + x_dist) / 2

10. 对位置编码进行插值:

posemb代表未插值的位置编码权值,posemb_tok为位置编码的token部分,posemb_grid为位置编码的插值部分。
首先把要插值部分posemb_grid给reshape成(1, gs_old, gs_old, -1)的形式,再插值成(1, gs_new, gs_new, -1)的形式,最后与token部分在第1维度拼接在一起,得到插值后的位置编码posemb。

def resize_pos_embed(posemb, posemb_new):    # Rescale the grid of position embeddings when loading from state_dict. Adapted from    # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224    _logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape)    ntok_new = posemb_new.shape[1]    if True:        posemb_tok, posemb_grid = posemb[:, :1], posemb[0, 1:]        ntok_new -= 1    else:        posemb_tok, posemb_grid = posemb[:, :0], posemb[0]    gs_old = int(math.sqrt(len(posemb_grid)))    gs_new = int(math.sqrt(ntok_new))    _logger.info('Position embedding grid-size from %s to %s', gs_old, gs_new)    posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)    posemb_grid = F.interpolate(posemb_grid, size=(gs_new, gs_new), mode='bilinear')    posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new * gs_new, -1)    posemb = torch.cat([posemb_tok, posemb_grid], dim=1)    return posemb

11. _create_vision_transformer函数用于创建vision transformer:

checkpoint_filter_fn的作用是加载预训练权重。

def checkpoint_filter_fn(state_dict, model):    """ convert patch embedding weight from manual patchify + linear proj to conv"""    out_dict = {}    if 'model' in state_dict:        # For deit models        state_dict = state_dict['model']    for k, v in state_dict.items():        if 'patch_embed.proj.weight' in k and len(v.shape) < 4:            # For old models that I trained prior to conv based patchification            O, I, H, W = model.patch_embed.proj.weight.shape            v = v.reshape(O, -1, H, W)        elif k == 'pos_embed' and v.shape != model.pos_embed.shape:            # To resize pos embedding when using model at different size from pretrained weights            v = resize_pos_embed(v, model.pos_embed)        out_dict[k] = v    return out_dict

def _create_vision_transformer(variant, pretrained=False, distilled=False, **kwargs): default_cfg = default_cfgs[variant] default_num_classes = default_cfg['num_classes'] default_img_size = default_cfg['input_size'][-1]
num_classes = kwargs.pop('num_classes', default_num_classes) img_size = kwargs.pop('img_size', default_img_size) repr_size = kwargs.pop('representation_size', None) if repr_size is not None and num_classes != default_num_classes: # Remove representation layer if fine-tuning. This may not always be the desired action, # but I feel better than doing nothing by default for fine-tuning. Perhaps a better interface? _logger.warning("Removing representation layer for fine-tuning.") repr_size = None
model_cls = DistilledVisionTransformer if distilled else VisionTransformer model = model_cls(img_size=img_size, num_classes=num_classes, representation_size=repr_size, **kwargs) model.default_cfg = default_cfg
if pretrained: load_pretrained( model, num_classes=num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=partial(checkpoint_filter_fn, model=model)) return model

12. 定义和注册vision transformer模型:

@ 指装饰器。
@register_model代表注册器,注册这个新定义的模型。
model_kwargs是一个存有模型所有超参数的字典。
最后使用上面定义的_create_vision_transformer函数创建模型。

@register_modeldef vit_base_patch16_224(pretrained=False, **kwargs):    """ ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).    ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.    """    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)    model = _create_vision_transformer('vit_base_patch16_224', pretrained=pretrained, **model_kwargs)    return model

一共可以选择的模型包括:

ViT系列:
vit_small_patch16_224
vit_base_patch16_224
vit_base_patch32_224
vit_base_patch16_384
vit_base_patch32_384
vit_large_patch16_224
vit_large_patch32_224
vit_large_patch16_384
vit_large_patch32_384
vit_base_patch16_224_in21k
vit_base_patch32_224_in21k
vit_large_patch16_224_in21k
vit_large_patch32_224_in21k
vit_huge_patch14_224_in21k
vit_base_resnet50_224_in21k
vit_base_resnet50_384
vit_small_resnet26d_224
vit_small_resnet50d_s3_224
vit_base_resnet26d_224
vit_base_resnet50d_224

DeiT系列:
vit_deit_tiny_patch16_224
vit_deit_small_patch16_224
vit_deit_base_patch16_224
vit_deit_base_patch16_384
vit_deit_tiny_distilled_patch16_224
vit_deit_small_distilled_patch16_224
vit_deit_base_distilled_patch16_224
vit_deit_base_distilled_patch16_384

以上就是对timm库 vision_transformer.py代码的分析。

如何使用timm库以及 vision_transformer.py代码搭建自己的模型?

在搭建我们自己的视觉Transformer模型时,我们可以按照下面的步骤操作:首先

  • 继承timm库的VisionTransformer这个类。
  • 添加上自己模型独有的一些变量
  • 重写forward函数。
  • 通过timm库的注册器注册新模型。

我们以ViT模型的改进版DeiT为例:

首先,DeiT的所有模型列表如下:

__all__ = [    'deit_tiny_patch16_224', 'deit_small_patch16_224', 'deit_base_patch16_224',    'deit_tiny_distilled_patch16_224', 'deit_small_distilled_patch16_224',    'deit_base_distilled_patch16_224', 'deit_base_patch16_384',    'deit_base_distilled_patch16_384',]

导入VisionTransformer这个类,注册器register_model,以及初始化函数trunc_normal_:

from timm.models.vision_transformer import VisionTransformer, _cfgfrom timm.models.registry import register_modelfrom timm.models.layers import trunc_normal_
DeiT的class名称是DistilledVisionTransformer,它直接继承了VisionTransformer这个类:
class DistilledVisionTransformer(VisionTransformer):

添加上自己模型独有的一些变量:

def __init__(self, *args, **kwargs):    super().__init__(*args, **kwargs)    self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))    num_patches = self.patch_embed.num_patches    # 位置编码不是ViT中的(b, N, 256), 而变成了(b, N+2, 256), 原因是还有class token和distillation token.    self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 2, self.embed_dim))    self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if self.num_classes > 0 else nn.Identity()
trunc_normal_(self.dist_token, std=.02) trunc_normal_(self.pos_embed, std=.02) self.head_dist.apply(self._init_weights)

重写forward函数:

def forward_features(self, x):    # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py    # with slight modifications to add the dist_token    B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks dist_token = self.dist_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, dist_token, x), dim=1)
x = x + self.pos_embed x = self.pos_drop(x)
for blk in self.blocks: x = blk(x)
x = self.norm(x)
return x[:, 0], x[:, 1]
def forward(self, x): x, x_dist = self.forward_features(x) x = self.head(x) x_dist = self.head_dist(x_dist) if self.training: return x, x_dist else: # during inference, return the average of both classifier predictions return (x + x_dist) / 2

通过timm库的注册器注册新模型:

@register_modeldef deit_base_patch16_224(pretrained=False, **kwargs):    model = VisionTransformer(        patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,        norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)    model.default_cfg = _cfg()    if pretrained:        checkpoint = torch.hub.load_state_dict_from_url(            url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",            map_location="cpu", check_hash=True        )        model.load_state_dict(checkpoint["model"])    return model
个人微信(如果没有备注不拉群!
请注明:地区+学校/企业+研究方向+昵称



下载1:何恺明顶会分享


AI算法与图像处理」公众号后台回复:何恺明,即可下载。总共有6份PDF,涉及 ResNet、Mask RCNN等经典工作的总结分析


下载2:终身受益的编程指南:Google编程风格指南


AI算法与图像处理」公众号后台回复:c++,即可下载。历经十年考验,最权威的编程规范!



下载3 CVPR2020

AI算法与图像处公众号后台回复:CVPR2020即可下载1467篇CVPR 2020论文


觉得不错就点亮在看吧



浏览 46
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报