老板让我做个原因分析我犯难了
作者:拿破仑的DO君
来源:数据氧气
作为业务部门的数据分析师,经常面临的场景就是分析异常。比如老板找到你说:“小伙,帮我分析下最近一周的GMV下降的原因”。很多人拿到这个问题的时候就开始直接去找各个维度来拆分看了,最后还是一脸茫然。
第一类是按照结构进行细分:- 事物或组织本身的结构;产线的区分(如化妆品类,生鲜类等),区域的区分(如华东/华西/华南大区),渠道的区分(APP/小程序/PC端)等;- 杜邦分析法,是杜邦公司发明的,采用金字塔结构,把企业净资产收益率逐级分解为多项财务指标的比值或乘积。这个借鉴于我们常规的指标体系的分析中。比如在文首遇到的那个情景,GMV同比下降30%,可以按照杜邦分析法进行指标拆解,定位是UV少了,还是cr下降了,还是客单价降低主要影响。


02时间流程
第二类是时间(流程)维度:
- 时间颗粒度下的细分,按年/月/周/日对齐的方式细分看异常是否集中于某一时间段;- 漏斗分析法,这是互联网用于行为分析中使用较多的分析法,分析从潜在用户到最终用户这个过程中用户数量的变化情况,确定整个流程的设计是否合理,各步骤的优劣,和是否存在优化的机会。

-客户生命周期的方法,主要应用的场景是用户运营,聚焦不同阶段用户运营的策略,平时接触不多,就不展开。

03程度属性
第三类是程度分析方法,聚焦关注重点:-ABC分析法,又称帕累托图法。据事物在技术或经济方面的主要特征,进行分类排队,分清重点和一般,从而有区别地确定管理方式的一种分析方法。A类是我们重点关注的。比如可以在平台上去识别A类SKU带来累计GMV达80%,B类和C类占比剩余20%,理清楚平台的重点品类。
- A类因素,发生累计频率为0%~80%,是主要影响因素。
- B类因素,发生累计频率为80%~90%,是次要影响因素。
- C类因素,发生累计频率为90%~100%,是一般影响因素。

案例使用:在日常指标分析过程中,一般常用的是杜邦分析,结构细分和漏斗想结合的方式来定位异常点。1-我们通过定位发现近期GMV的下降,首先拆解日期来看,没有集中在哪一天有异常;2- 通过杜邦分析法拆解为UV*cr*客单价三个部分,定位到是转化率cr的下将是主要影响成分。3- 拆解cr的过程,按照 详情页-填写页-提交订单-支付订单漏斗流程中去拆解发现是在填写页到提交订单这个过程转化率下降。4- 使用常见单维度因素去识别:平台(APP/H5/PC),主要影响是APP,产线(门票/跟团/酒店)无差异;5- 拆解ios/安卓系统,版本维度拆解去看是否对这个过程的影响;识别到时填写页验证码有bug导致 这个步骤转化率变低,从而识别到改进点。以上这个案例是将平时的分析过程进行了简化,但是方法和套路是不变的,多加练习,用好细分分析手法,拆解定位问题信手拈来。
◆ ◆ ◆ ◆ ◆
长按二维码关注我们
数据森麟公众号的交流群已经建立,许多小伙伴已经加入其中,感谢大家的支持。大家可以在群里交流关于数据分析&数据挖掘的相关内容,还没有加入的小伙伴可以扫描下方管理员二维码,进群前一定要关注公众号奥,关注后让管理员帮忙拉进群,期待大家的加入。
管理员二维码:
● 华农兄弟、徐大Sao&李子柒?谁才是B站美食区的最强王者?
● 你相信逛B站也能学编程吗
评论