秒懂!图解四个实用的Pandas函数!

共 1411字,需浏览 3分钟

 ·

2020-10-29 17:30

来源:towardsdatascience

作者:Baijayanta Roy

编译&内容补充:早起Python

在用Python进行机器学习或者日常的数据处理中,Pandas是最常用的Python库之一,熟练掌握pandas是每一个数据科学家的必备技能,本文将用代码+图片详解Pandas中的四个实用函数!

  shift()

假设我们有一组股票数据,需要对所有的行进行移动,或者获得前一天的股价,又或是计算最近三天的平均股价。

面对这样的需求我们可以选择自己写一个函数完成,但是使用pandas中的shift()可能是最好的选择,它可以将数据按照指定方式进行移动!

下面我们用代码进行演示,首先导入相关库并创建示例DataFrame

import pandas as pd
import numpy as np
df = pd.DataFrame({'DATE': [12345],
                   'VOLUME': [100200300,400,500],
                   'PRICE': [214234253,272,291]})

现在,当我们执行df.shift(1,fill_value=0)即可将数据往下移动一行,并用0填充空值

现在,如果我们需要将前一天的股价作为新的列,则可以使用下面的代码

我们可以如下轻松地计算最近三天的平均股价,并创建一个新的列

向前移动数据也是很轻松的,使用-1即可

更多有关shift函数可以查阅官方文档,总之在涉及到数据移动时,你需要想到shift!

  value_counts()

pandas中的value_counts()用于统计dataframe或series中不同数或字符串出现的次数,并可以通过降序或升序对结果对象进行排序,下图可以方便理解。

现在让我们用代码示例,首先是Index对象

下面是Series对象

同时可以对bin参数将结果划分为区间

更多的细节与参数设置,可以阅读pandas官方文档。

  mask()

pandas中的mask方法比较冷门,和np.where比较类似,将对cond条件进行判断,如果cond为False,请保留原始值。如果为True,则用other中的相应值替换。

现在我们看下面的DataFrame,在这里我们要更改所有可以被二整除的元素的符号,就可以使用mask

下面是代码实现过程

  nlargest() 

在很多情况下,我们会遇到需要查找Series或DataFrame的前3名或后5名值的情况,例如,总得分最高的3名学生,或选举中获得的总票数的3名最低候选人

pandas中的nlargest()nsmallest()是满足此类数据处理要求的最佳答案,下面就是从10个观测值中取最大的三个图解

下面是代码实现过程

但如果有相等的情况出现,那么可以使用first,last,all来进行保留

了解了nlargest()的使用方法后,nsmallest()就显得十分简单,本文就不再赘述,如果还有疑问可以查阅官方文档!

-END-


浏览 47
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报