【Python】用Python爬取了2900多款防脱洗发水数据并进行可视化分析,助你缓解脱发困扰
共 3748字,需浏览 8分钟
·
2022-12-22 09:29
就在前段时间,一项由卫健委发起的脱发人群调查数据显示:中国受脱发问题困扰的人群高达2.5亿。听到这儿,远在韩国的各家媒体又开始出来搞事情了,
根据他们的计算,这些人完全脱发时的总脱发面积大约可达5900平方公里,相当于首尔市面积(605平方公里)的十倍,那么今天小编就以一个数据分析师的身份来为这些人群出出主意,挑几款相对合适的防脱发洗发水给他们来使用
脱发其实分为很多种情况,如脂溢性脱发,表现为头屑增多、头皮痛痒、头发油脂分泌旺盛。还有营养性脱发,当饮食作息不规律时,脱发情况就会愈发地严重,以及物理性脱发,有时头发扎太紧、扯伤毛囊,都会造成脱发。
不过大家也不用太过于担心,有研究表明,一个正常人每天脱落80-100根头发属于正常情况,但是如果超过100根就要提高警惕了,极大可能是头发的生长跟不上脱发的速度了。而有一款合适的洗发水,保持头皮的清洁卫生,对于防脱生发也有着极大的帮助,而对于不同头皮发质、不同年龄段的人来说,使用的洗发水也是不尽相同的。
数据采集是数据可视化分析的第一步,也是最基础的一步,本文主要是基于从电商平台上抓取一些防脱发类型的洗发水,采集过程如下
该页面的总共60件商品由两个子页面构成的,每一个子页面分别包含30件商品,通过page参数来进行调节,那么我们请求的构造方式就变得相当简单了,
def get_xxx_html(page):
params = (
('keyword', '\u9632\u8131\u53D1\u6D17\u53D1\u6C34'),
('qrst', '1'),
('suggest', '1.def.0.base'),
('wq', '\u9632\u8131\u53D1\u6D17\u53D1\u6C34'),
('stock', '1'),
('pvid', '4d8b661510984fb5ae2bf68fac6c50c7'),
('page', str(page)),
('s', '27'),
('scrolling', 'y'),
('log_id', '1633307411833.8939'),
('tpl', '1_M'),
('isList', '0'),
)
response = requests.get('https://search.xxxx.com/s_new.php', headers=headers, params=params, proxies=proxies)
response_beau = BeautifulSoup(response.text, 'lxml')
return response_beau
通过这个请求,可以获取到的商品信息如下
而针对评论方面的内容,则是以json数据形式存在,比较好解析,而且接口api非常明确,可以直接通过商品id这个参数即可进行请求的获取
params = (
('callback', 'fetchJSON_comment98'),
('productId', str(productId)),
('score', '0'),
('sortType', '5'),
('page', '0'),
('pageSize', '10'),
('isShadowSku', '0'),
('fold', '1'),
)
response = requests.get('https://club.xxxxx.com/comment/productPageComments.action', headers=headers, params=params, cookies=cookies)
response_jsonified = response.text.replace("fetchJSON_comment98", "")[1:-2]
response_jsonified_again = json.loads(response_jsonified)
productCommentSummary = response_jsonified_again.get("productCommentSummary")
commentSum = productCommentSummary.get("commentCountStr")
goodRate = productCommentSummary.get("goodRate")
数据采集后,接下来便对其进行数据清洗,去除重复值与脏数据,有助于提高可视化分析的准确性。
import pandas as pd
df = pd.read_excel("jd_product_info.xlsx")
df.info()
df.drop_duplicates()
df["product_name"] = df["product_name"].str.replace(r'\s','',regex=True)
df["commentSum"] = df["commentSum"].str.replace('+','',regex=True).str.replace('万','0000',regex=True)
df.describe()
df["product_price"].plot.hist(stacked = True, bins=20)
df["product_price_range"] = df["product_price"].apply(lambda x: range_price(x))
df["product_price_range"].value_counts()
大部分的商品评论数都是在5000+或者是2000+左右,或者是在200以及500左右的评论量,而评论数在50万以上以及100万以上的分别有22个和17个,我们可以基本认定这些类的商品,它的购买量是最多的,我们
df["commentSum"].value_counts().head(8)
df[df["commentSum"] == "1000000"]["product_shop_name"].value_counts()
df["product_shop_name"].value_counts().head(20)
不同头皮、不同发质所对应使用的洗发水不同,例如对于油性头皮,想要“去屑、控油、防脱”功效的洗发水,可以这么来搜索
df_1 = df[df["product_head"] == "适合头皮:油性"]
df_1["commentSum"] = df_1["commentSum"].astype("int")
df_1[df_1["product_function"].str.contains("去屑")].sort_values("commentSum", ascending = False)
例如对于中性头皮,想要达到控油效果的洗发水,则可以这么来搜索
df_1 = df[df["product_head"] == "适合头皮:中性"]
df_1["commentSum"] = df_1["commentSum"].astype("int")
df_1[df_1["product_function"].str.contains("控油")].sort_values("commentSum", ascending = False)
往期精彩回顾
适合初学者入门人工智能的路线及资料下载 (图文+视频)机器学习入门系列下载 机器学习及深度学习笔记等资料打印 《统计学习方法》的代码复现专辑 机器学习交流qq群955171419,加入微信群请扫码