PaddleX飞桨深度学习全流程开发工具

联合创作 · 2023-09-26 05:56

PaddleX 集成飞桨智能视觉领域图像分类、目标检测、语义分割、实例分割任务能力,将深度学习开发全流程从数据准备、模型训练与优化到多端部署端到端打通,并提供统一任务API接口及图形化开发界面 Demo。开发者无需分别安装不同套件,以低代码的形式即可快速完成飞桨全流程开发。

PaddleX 经过质检、安防、巡检、遥感、零售、医疗等十多个行业实际应用场景验证,沉淀产业实际经验,并提供丰富的案例实践教程,全程助力开发者产业实践落地。

安装

PaddleX提供三种开发模式,满足用户的不同需求:

  1. Python开发模式:

    通过简洁易懂的Python API,在兼顾功能全面性、开发灵活性、集成方便性的基础上,给开发者最流畅的深度学习开发体验。

前置依赖

  • paddlepaddle >= 1.8.4
  • python >= 3.6
  • cython
  • pycocotools
pip install paddlex -i https://mirror.baidu.com/pypi/simple

详细安装方法请参考PaddleX安装

  1. Padlde GUI模式:

    无代码开发的可视化客户端,应用Paddle API实现,使开发者快速进行产业项目验证,并为用户开发自有深度学习软件/应用提供参照。

  1. PaddleX Restful:
    使用基于RESTful API开发的GUI与Web Demo实现远程的深度学习全流程开发;同时开发者也可以基于RESTful API开发个性化的可视化界面

产品模块说明

  • 数据准备:兼容ImageNet、VOC、COCO等常用数据协议,同时与Labelme、精灵标注助手、EasyData智能数据服务平台等无缝衔接,全方位助力开发者更快完成数据准备工作。

  • 数据预处理及增强:提供极简的图像预处理和增强方法--Transforms,适配imgaug图像增强库,支持上百种数据增强策略,是开发者快速缓解小样本数据训练的问题。

  • 模型训练:集成PaddleClasPaddleDetectionPaddleSeg视觉开发套件,提供大量精选的、经过产业实践的高质量预训练模型,使开发者更快实现工业级模型效果。

  • 模型调优:内置模型可解释性模块、VisualDL可视化分析工具。使开发者可以更直观的理解模型的特征提取区域、训练过程参数变化,从而快速优化模型。

  • 多端安全部署:内置PaddleSlim模型压缩工具和模型加密部署模块,与飞桨原生预测库Paddle Inference及高性能端侧推理引擎Paddle Lite 无缝打通,使开发者快速实现模型的多端、高性能、安全部署。

浏览 9
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报