可解释机器学习 : 模型、方法与
本书先从背景出发,阐述黑盒模型存在的问题以及不解决黑盒问题模型可能带来的后果,引出可解释机器学习的重要性;随后,我们从可解释机器学习的研究方向,分为内在可解释模型算法和模型事后解析方法两部分进行介绍,阐述不同模型的原理、应用及其可解释性。z后通过三个不同的应用场景,介绍在银行实战中的数据挖掘方法,由问题、处理方法出发,结合可解释机器学习模型结果,证明模型的有效性和实用性,期望读者通过对本书的阅读,可以更快更好的解决实际业务问题,而非纸上谈兵。业务场景均为业内的典型案例,希望能够对读者有所启发。同时,本书中还会有大量的公式与代码,保证内容的丰富与严谨,经得起推敲,使得读者知其然且知其所以然。
邵平
资深数据科学家,索信达控股金融AI实验室总监。在大数据、人工智能领域有十多年技术研发和行业应用经验。技术方向涉及可解释机器学习、深度学习、时间序列预测、智能推荐、自然语言处理等。现主要致力于可解释机器学习、推荐系统、银行智能营销和智能风控等领域的技术研究和项目实践。
杨健颖
云南财经大学统计学硕士,高级数据挖掘工程师,一个对数据科学有坚定信念的追求者,目前重点研究机器学习模型的可解释性。
苏思达
美国天普大学统计学硕士,机器学习算法专家,长期为银行提供大数据与人工智能解决方案和技术服务。主要研究方向为可解释机器学习与人工智能,曾撰写《可解释机器学习研究报告》和多篇可解释机器学习相关文章。
评论