模式识别 : 第四版
本书全面阐述了模式识别的基础理论、最新方法以及各种应用。模式识别是信息科学和人工智能的重要组成部分,主要应用领域有图像分析、光学字符识别、信道均衡、语言识别和音频分类等。本书在完美地结合当前的理论与实践的基础上,讨论了贝叶斯分类、贝叶斯网络、线性和非线性分类器设计、上下文相关分类、特征生成、特征选取技术、学习理论的基本概念以及聚类概念与算法。与前一版相比,增加了大数据集和高维数据相关的最新算法,这些算法适用于Web挖掘和生物信息等应用;提供了最新的分类器和鲁棒回归的核方法;分类器组合技术,包括Boosting方法。新增一些热点问题,如非线性降维、非负矩阵因数分解、关联性反馈、鲁棒回归、半监督学习、谱聚类和聚类组合技术。每章均提供有习题与练习,用MATLAB求解问题,给出一些例题的多种求解方法;且支持网站上提供有习题解答,以便于读者增加实际经验。
本书...
本书全面阐述了模式识别的基础理论、最新方法以及各种应用。模式识别是信息科学和人工智能的重要组成部分,主要应用领域有图像分析、光学字符识别、信道均衡、语言识别和音频分类等。本书在完美地结合当前的理论与实践的基础上,讨论了贝叶斯分类、贝叶斯网络、线性和非线性分类器设计、上下文相关分类、特征生成、特征选取技术、学习理论的基本概念以及聚类概念与算法。与前一版相比,增加了大数据集和高维数据相关的最新算法,这些算法适用于Web挖掘和生物信息等应用;提供了最新的分类器和鲁棒回归的核方法;分类器组合技术,包括Boosting方法。新增一些热点问题,如非线性降维、非负矩阵因数分解、关联性反馈、鲁棒回归、半监督学习、谱聚类和聚类组合技术。每章均提供有习题与练习,用MATLAB求解问题,给出一些例题的多种求解方法;且支持网站上提供有习题解答,以便于读者增加实际经验。
本书可作为高等院校自动化、计算机、电子和通信等专业研究生和高年级本科生的教材,也可作为计算机信息处理、自动控制等相关领域的工程技术人员的参考用书。
Serclios Theodoridis于1973年在雅典大学获得物理学学士学位,又分别于1975和1978年在英国伯明翰大学获得信号处理与通信硕士和博士学位。自1995年,他是希腊雅典大学信息与通信系教授。他有4篇论文获得IEEE的神经网络会刊的卓越论文奖,他是IET和IEEE高级会员。
Konstatinos Koutroumbas,1989年毕业于希腊佩特雷大学的计算机工程与信息学院,1990年在英国伦敦大学获得计算机科学硕士学位,1995年在希腊雅典大学获得博士学位。自2001年任职于希腊雅典国家天文台空间应用与遥感研究院,是国际知名的专家。