流形上的分析

联合创作 · 2023-09-14 17:59

《流形上的分析》根据J.R.曼克勒斯先生所著的Analysis on Manifolds一书译出。原书禀承了作者一贯的写作风格,论述精辟透彻,深入浅出。原书作为研究生和高年级本科生的分析后续教材,它的基础和起点是本科数学分析、线性代数及一般拓扑。主要内容包括:第一章复习并扩充了全书所需要的代数与拓扑知识;第二至四章系统论述了n维欧氏空间中的多元微积分,这是对普通数学 分析的推广与提高,也是为流形上的分析做准备;第五至八章系统论述流形上的分析,其中包括一般Stokes定理和de Rham上同调等内容。此外,为便于初学者理解和掌握,作者是采用把流形嵌入高维欧氏空间的观点讲述的,因为这样更直观,几何意义更明显,便于初学者联想和想象。而在原书的最后一章又引导读者摆脱欧氏空间的束缚,给出了抽象流形的概念并简要介绍了一般可微流形和Riemann流形,从而使读者再...

《流形上的分析》根据J.R.曼克勒斯先生所著的Analysis on Manifolds一书译出。原书禀承了作者一贯的写作风格,论述精辟透彻,深入浅出。原书作为研究生和高年级本科生的分析后续教材,它的基础和起点是本科数学分析、线性代数及一般拓扑。主要内容包括:第一章复习并扩充了全书所需要的代数与拓扑知识;第二至四章系统论述了n维欧氏空间中的多元微积分,这是对普通数学 分析的推广与提高,也是为流形上的分析做准备;第五至八章系统论述流形上的分析,其中包括一般Stokes定理和de Rham上同调等内容。此外,为便于初学者理解和掌握,作者是采用把流形嵌入高维欧氏空间的观点讲述的,因为这样更直观,几何意义更明显,便于初学者联想和想象。而在原书的最后一章又引导读者摆脱欧氏空间的束缚,给出了抽象流形的概念并简要介绍了一般可微流形和Riemann流形,从而使读者再上一个台阶。原书的另一个特点是内容丰富、详实、系统,特别适合作教材使用,也便于读者自学。

《流形上的分析》可作为数学专业的研究生和高年级本科生的教材或参考书,也可供物理及某些工科专业的研究生、青年教师和有关工程技术人员参考。

浏览 3
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报