金融时间序列分析
《金融时间序列分析》主要介绍了计量经济学和统计学文献中出现的金融计量方法方面的最新进展,强调实例和数据分析。特别是包含当前的研究热点,如风险值、高频数据分析和马尔町夫链蒙特卡罗方法等。主要内容包括:金融时间序列数据的基本特征,神经网络,非线性方法,使用跳跃扩散方程进行衍生产品的定价,采用极值理论计算风险值,带时变相关系数的多元波动率模型,贝叶斯推断。
《金融时间序列分析》可作为金融等专业高年级本科生或研究生的时间序列分析教材,也可供相关专业研究人员参考。
Ruey S.Tsay 于美国威斯康星大学麦迪逊分校获得统计学博士学位,美国芝加哥大学商学院研究生院经济计量及统计学的H.G.B.Alexander教授。曾任Journal of Financial Econometrics杂志栏目编辑。
评论