机器学习与R语言
随着大数据的概念变得越来越流行,对数据的探索、分析和预测成为大数据分析领域的基本技能之一。作为探索和分析数据的基本理论和工具,机器学习和数据挖掘成为时下炙手可热的技术。R作为功能强大并且免费的数据分析工具,在数据分析领域获得了越来越多用户的青睐。
本书通过丰富的实际案例来探索如何应用R来进行现实世界问题的机器学习,如何从数据中获取可以付诸行动的洞察力。本书案例清晰而实用,讲解循序渐进,是一本用R进行机器学习的实用指南,既适用于机器学习的初学者,也适用于具有一定经验的老手,本书将帮助他们回答有关R的所有问题。
Brett Lantz
在应用创新的数据方法来理解人类的行为方面有10余年经验。他最初是一名社会学家,在学习一个青少年社交网站分布的大型数据库时,他就开始陶醉于机器学习。从那时起,他致力于移动电话、医疗账单数据和公益活动等交叉学科的研究,并维护dataspelunking.com这个网站,该网站致力于分享有关探寻数据中所蕴含的洞察的知识。
译者简介
李洪成 统计学博士,现为上海金融学院副教授,是SPSS统计分析软件和R语言专家。他的研究方向为金融统计和数据挖掘。他曾出版多本著作,并在专业杂志发表多篇论文,代表著作有《SPSS18数据分析基础与实践》、《SPSS数据分析教程》、《时间序列预测实践教程》,译著有《R语言经典实例》、《数据挖掘与R语言》、《金融数据分析导论:基于R语言》等。
评论