Python高性能(第2版)

联合创作 · 2023-10-09 18:14

本书是一本Python性能提升指南,展示了如何利用Python的原生库以及丰富的第三方库来构建健壮的应用程序。书中阐释了如何利用各种剖析器来找出Python应用程序的性能瓶颈,并应用正确的算法和高效的数据结构来解决它们;介绍了如何有效地利用NumPy、Pandas和Cython高性能地执行数值计算;解释了异步编程的相关概念,以及如何利用响应式编程实现响应式应用程序;概述了并行编程的概念,并论述了如何利用TensorFlow和Theano为并行架构编写代码,以及如何通过Dask和PySpark等技术在计算机集群上执行大规模计算。

通过学习本书,你将能够实现高性能、可伸缩的Python应用程序。

- 利用NumPy和Pandas编写高效的数值计算代码

- 利用Cython和Numba实现近似本地的性能

- 利用剖析器发现Python应用程序的瓶颈

- 利...

本书是一本Python性能提升指南,展示了如何利用Python的原生库以及丰富的第三方库来构建健壮的应用程序。书中阐释了如何利用各种剖析器来找出Python应用程序的性能瓶颈,并应用正确的算法和高效的数据结构来解决它们;介绍了如何有效地利用NumPy、Pandas和Cython高性能地执行数值计算;解释了异步编程的相关概念,以及如何利用响应式编程实现响应式应用程序;概述了并行编程的概念,并论述了如何利用TensorFlow和Theano为并行架构编写代码,以及如何通过Dask和PySpark等技术在计算机集群上执行大规模计算。

通过学习本书,你将能够实现高性能、可伸缩的Python应用程序。

- 利用NumPy和Pandas编写高效的数值计算代码

- 利用Cython和Numba实现近似本地的性能

- 利用剖析器发现Python应用程序的瓶颈

- 利用asyncio和RxPy编写整洁的并发代码

- 利用TensorFlow和Theano在Python中自动实现并行性

- 利用Dask和PySpark在计算机集群上运行分布式并行算法

加布丽埃勒•拉纳诺(Gabriele Lanaro)

数据科学家、软件工程师,对机器学习、信息检索、数值计算可视化、Web开发、计算机图形学和系统管理有浓厚的兴趣。开源软件包chemlab和chemview的开发者。现就职于Tableau软件公司。

浏览 19
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报