Grothendieck《基础代数几何学(FGA)》解读(影印版)
Alexander Grothendieck以极其深刻、极富创造性的思想,使得代数几何学发生了里程碑式的变革。他在1957年到1962年的布尔巴基讨论班上给出了他的新理论的一个概述,然后将这些讲义整理成一系列的文章,编成了著名的《基础代数几何学》(Fondements dela géométrie algébrique),即我们熟知的FGA。
FGA中的许多内容目前已广为人知,然而仍有一些知识是大家所不了解的,只有少数几何学家熟悉它的全部内容。本书源自2003年在意大利的里雅斯特(Trieste)开设的基础代数几何高级学校,目的就是完善Grothendieck对于其理论过于简要的概述。本书讨论的四个重要主题为:
下降理论、Hilbert和Quot概形、形式存在定理和Picard概形。作者们给出了主要结果的完整证明,在必要时使用较新的概念以使读者更好理...
Alexander Grothendieck以极其深刻、极富创造性的思想,使得代数几何学发生了里程碑式的变革。他在1957年到1962年的布尔巴基讨论班上给出了他的新理论的一个概述,然后将这些讲义整理成一系列的文章,编成了著名的《基础代数几何学》(Fondements dela géométrie algébrique),即我们熟知的FGA。
FGA中的许多内容目前已广为人知,然而仍有一些知识是大家所不了解的,只有少数几何学家熟悉它的全部内容。本书源自2003年在意大利的里雅斯特(Trieste)开设的基础代数几何高级学校,目的就是完善Grothendieck对于其理论过于简要的概述。本书讨论的四个重要主题为:
下降理论、Hilbert和Quot概形、形式存在定理和Picard概形。作者们给出了主要结果的完整证明,在必要时使用较新的概念以使读者更好理解,并且阐述了FGA的理论与新近发展的联系。
本书适合于对代数几何学感兴趣的研究生和专业研究人员阅读。学习本书需要全面扎实的基础概形理论知识。