机器视觉
《机器视觉》从逆问题的角度出发,提出了一整套关于机器视觉的研究方法,其核心是:机器视觉应该基于对成像过程的深刻理解!作为作者在麻省理工学院(MIT)所讲授的机器视觉课程的指定教材,本书已经被使用了近30年,至今仍被欧美许多著名高校所广泛使用。本书提供了一个理解现有方法和技术以及为以后的研究做准备的系统框架,其中包含了很多将机器视觉方法应用于实际问题的内容。全书共包括18章,前13章主要讲述早期视觉的内容,后5章更加关注于:解决一些更加复杂的实际问题。最后,作者将各个章节所介绍的方法整合到一起,搭建了一个可以和周围环境进行交互的“眼-手”系统。书中所用到的数学方法,也都收录在最后的附录中;作为内容的补充和扩展,本书还提供了丰富的练习题。
本书可以作为高等院校相关专业本科生和研究生一年级课程的教材,也可以作为研究人员的参考书籍。
伯特霍尔德·霍恩(Berthold Klaus Paul Horn)现为美国麻省理工学院(MIT)计算机与电子工程系(EECS)人工智能实验室(CSAIL)的教授、美国工程院(NAE)院士、美国人工智能协会(AAAI)院士,是享有国际声望的计算机视觉领域专家。他从事计算机视觉领域的研究长达40多年,在该领域有许多开创性和奠基性的贡献,其博士论文《Shape from Shading》开创了一个崭新的研究领域。他提出的经典光流算法(Horn - Schunck方法)奠定了光流及运动视觉研究的基础。霍恩教授的很多研究成果,如:二维retinex算法、反射图、扩展Gauss图、无源导航等,都在计算机视觉领域和工业界发挥着巨大的作用。他所开创的基于逆问题理论、通过分析成像过程来研究机器视觉的方法,被称为霍恩学派。
评论