机器学习精讲

联合创作 · 2023-09-28 23:24

本书用简短的篇幅、精炼的语言,讲授机器学习领域必备的知识和技能。全书共11章和一个术语表,依次介绍了机器学习的基本概念、符号和定义、算法、基本实践方法、神经网络和深度学习、问题与解决方案、进阶操作、非监督学习以及其他学习方式等,涵盖了监督学习和非监督学习、支持向量机、神经网络、集成学习、梯度下降、聚类分析、维度降低、自编码器、迁移学习、强化学习、特征工程、超参数调试等众多核心概念和方法。全书最后给出了一个较为详尽的术语表。

本书能够帮助读者了解机器学习是如何工作的,为进一步理解该领域的复杂问题和进行深入研究打好基础。本书适合想要学习和掌握机器学习的软件从业人员、想要运用机器学习技术的数据科学家阅读,也适合想要了解机器学习的一般读者参考。

安德烈·布可夫(Andriy Burkov)是一位机器学习专家,目前居住于加拿大魁北克省。他拥有人工智能博士学位,尤其擅长自然语言处理技术。目前,他是高德纳(Gartner)咨询公司机器学习开发团队的主管。该团队的主要工作是,使用浅层和深度学习技术,开发可用于生产环境的、先进的多语言文字抽取和标准化系统。

浏览 1
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报