Python金融大数据分析(第2版)

联合创作 · 2023-09-25 20:16

Python已成为数据驱动AI、金融优先选择的编程语言。现在,一些大型的投资银行和对冲资金均使用Python及其生态系统来构建核心交易与风险管理系统。在本书中,作者向开发人员和量化分析人员介绍了使用Python程序库与工具,完成金融数据科学、算法交易和计算金融任务的方法。

Python与金融:Python交互式金融分析与程序开发入门。

基本知识:学习Python数据类型与结构、NumPy、pandas及其DataFrame类、面向对象编程。

金融数据科学:探索用于金融时间序列数据、I/O操作、推断统计学和机器学习的Python技术与程序库。

算法交易:使用Python来验证和部署自动算法交易策略。

衍生品分析:开发灵活、强大的Python期权、衍生品定价和风险管理程序库。

本书分为5部分,共21章。第1部分介绍了Python在金融学中的应用,其内容涵...

Python已成为数据驱动AI、金融优先选择的编程语言。现在,一些大型的投资银行和对冲资金均使用Python及其生态系统来构建核心交易与风险管理系统。在本书中,作者向开发人员和量化分析人员介绍了使用Python程序库与工具,完成金融数据科学、算法交易和计算金融任务的方法。

Python与金融:Python交互式金融分析与程序开发入门。

基本知识:学习Python数据类型与结构、NumPy、pandas及其DataFrame类、面向对象编程。

金融数据科学:探索用于金融时间序列数据、I/O操作、推断统计学和机器学习的Python技术与程序库。

算法交易:使用Python来验证和部署自动算法交易策略。

衍生品分析:开发灵活、强大的Python期权、衍生品定价和风险管理程序库。

本书分为5部分,共21章。第1部分介绍了Python在金融学中的应用,其内容涵盖了Python用于金融行业的原因、Python的基础架构和工具,以及Python在计量金融学中的一些具体入门实例;第2部分介绍了Python的基础知识以及Python中非常有名的库NumPy和pandas工具集,还介绍了面向对象编程;第3部分介绍金融数据科学的相关基本技术和方法,包括数据可视化、输入/输出操作和数学中与金融相关的知识等;第4部分介绍Python在算法交易上的应用,重点介绍常见算法,包括机器学习、深度神经网络等人工智能相关算法;第5部分讲解基于蒙特卡洛模拟开发期权及衍生品定价的应用,其内容涵盖了估值框架的介绍、金融模型的模拟、衍生品的估值、投资组合的估值等知识。

Yves Hilpisch博士是Python Quants集团的创始人和管理合伙人。该集团致力于应用开源技术来解决金融数据科学、人工智能、算法交易和计算金融学等问题。他还是AI Machine公司的创始人和CEO。这个公司的主营业务是通过专属策略执行平台来发挥人工智能的威力。他还是Python算法交易大学认证的在线培训项目的主管。

浏览 9
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报