Cohomology of Number Fields
Review
From the reviews of the second edition:
"The publication of a second edition gives me a chance to … emphasize what an important book it is. … the book a necessary part of the number theorist’s library. That it’s also well written, clear, and systematic is a very welcome bonus. … There are many goodies here … . it is an indispensable book for anyone working in number theo...
Review
From the reviews of the second edition:
"The publication of a second edition gives me a chance to … emphasize what an important book it is. … the book a necessary part of the number theorist’s library. That it’s also well written, clear, and systematic is a very welcome bonus. … There are many goodies here … . it is an indispensable book for anyone working in number theory. … Neukirch, Schmidt, and Wingberg have, in fact, produced … authoritative, complete, careful, and sure to be a reliable reference for many years." (Fernando Q. Gouvêa, MathDL, May, 2008)
"The second edition will continue to serve as a very helpful and up-to-date reference in cohomology of profinite groups and algebraic number theory, and all the additions are interesting and useful. … the book is fine as it is: systematic, very comprehensive, and well-organised. This second edition will be a standard reference from the outset, continuing the success of the first one." (Cornelius Greither, Zentralblatt MATH, Vol. 1136 (14), 2008)
Product Description
The present second edition is a corrected and extended version of the first. It is a textbook for students, as well as a reference book for the working mathematician, on cohomological topics in number theory. The first part provides algebraic background: cohomology of profinite groups, duality groups, free products, and homotopy theory of modules, with new sections on spectral sequences and on Tate cohomology of profinite groups. The second part deals with Galois groups of local and global fields: Tate duality, structure of absolute Galois groups of local fields, extensions with restricted ramification, Poitou-Tate duality, Hasse principles, theorem of Grunwald-Wang, Leopoldt s conjecture, Riemann s existence theorem, the theorems of Iwasawa and of afarevic on solvable groups as Galois groups, Iwasawa theory, and anabelian principles. New material is introduced here on duality theorems for unramified and tamely ramified extensions, a careful analysis of 2-extensions of real number fields and a complete proof of Neukirch s theorem on solvable Galois groups with given local conditions.