Apache Airflow 数据编排实战
数据管道通过整合、清理、分析、可视化等方式来管理初始收集的数据流。Apache Airflow提供了一个统一的平台,可以使用它设计、实施、监控和维护数据的流动。Airflow具有易于使用的UI、即插即用的选项以及灵活的Python脚本,这些都使Airflow能够非常轻松地完成任何数据管理任务。
在《Apache Airflow 数据编排实战》中,介绍了如何构建和维护有效的数据管道。与你一同探索最常见的使用模式,包括聚合多个数据源、连接到数据湖以及云端部署。可以将本书作为Airflow的实用指南,本书涵盖了为Airflow提供动力的有向无环图(DAG)的各方面知识,以及如何根据工作需求对其进行自定义的技术。
主要内容
●构建、测试及部署Airflow管道作为DAG
●自动对数据进行移动和转换
●使用回填技术分析历史数据集
●开发自定义组件
●...
数据管道通过整合、清理、分析、可视化等方式来管理初始收集的数据流。Apache Airflow提供了一个统一的平台,可以使用它设计、实施、监控和维护数据的流动。Airflow具有易于使用的UI、即插即用的选项以及灵活的Python脚本,这些都使Airflow能够非常轻松地完成任何数据管理任务。
在《Apache Airflow 数据编排实战》中,介绍了如何构建和维护有效的数据管道。与你一同探索最常见的使用模式,包括聚合多个数据源、连接到数据湖以及云端部署。可以将本书作为Airflow的实用指南,本书涵盖了为Airflow提供动力的有向无环图(DAG)的各方面知识,以及如何根据工作需求对其进行自定义的技术。
主要内容
●构建、测试及部署Airflow管道作为DAG
●自动对数据进行移动和转换
●使用回填技术分析历史数据集
●开发自定义组件
●在生产环境中搭建Airflow
读者对象
本书面向具有一定Python编程基础的程序员、DevOps工程师、数据工程师、机器学习工程师及系统管理员。
Bas Harenslak和Julian de Ruiter是数据工程师,他们在为大公司开发数据管道方面拥有丰富的经验。同时,Bas也是一位Airflow的提交者。