Fourier Analysis
This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences - that an arbitrary function can...
This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences - that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. "The Princeton Lectures in Analysis" represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which "Fourier Analysis" is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing "Fourier" series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
Stein在国际上享有盛誉,现任美国普林斯顿大学数学系教授。
他是当代分析,特别是调和分析和分析领域领袖人物之一。古典调和分析最困难问题之一是推广到多维。他是多维欧氏调和分析的创造者之一,为此他发展了许多先进工具如奇异积分、Radon变换、极大函数等。他还发展了多个实变元的Hardy空间理论,推广了1971年F. John和L. Nirenberg的重要发现:即Hardy空间与BMO空间的对偶。在群上的调和分析方面也有贡献,例如同R.Kunze一起发现所谓Kunze-Stein现象。除此之外,他对多复变问题也做出了突出成绩。
除了研究工作之外,他的许多书成为影响学科发展的重要参考文献。为此,他荣获1984年美国数学会在论述方面的Steele奖。
由于他的成就,他在1974年被选为美国国家科学院院士,1982年被选为美国文理学院院士,1993年获得瑞士...
Stein在国际上享有盛誉,现任美国普林斯顿大学数学系教授。
他是当代分析,特别是调和分析和分析领域领袖人物之一。古典调和分析最困难问题之一是推广到多维。他是多维欧氏调和分析的创造者之一,为此他发展了许多先进工具如奇异积分、Radon变换、极大函数等。他还发展了多个实变元的Hardy空间理论,推广了1971年F. John和L. Nirenberg的重要发现:即Hardy空间与BMO空间的对偶。在群上的调和分析方面也有贡献,例如同R.Kunze一起发现所谓Kunze-Stein现象。除此之外,他对多复变问题也做出了突出成绩。
除了研究工作之外,他的许多书成为影响学科发展的重要参考文献。为此,他荣获1984年美国数学会在论述方面的Steele奖。
由于他的成就,他在1974年被选为美国国家科学院院士,1982年被选为美国文理学院院士,1993年获得瑞士科学院颁发的Schock奖。1999年获得世界性Wolf数学奖。