非线性动力学定性理论方法(第一卷)

联合创作 · 2023-10-07 08:37

本书详细介绍非线性动力系统高维定性理论和分支理论(局部和大范围)。本教材共分两卷。第一卷共有6章和两个附录,主要内容有:动力系统基本概念、动力系统的结构稳定平衡态和结构稳定周期轨线、不变环面、局部和非局部中心流形理论、以及鞍点平衡态附近系统的特殊形式和鞍点不动点附近轨线的一阶渐近。本书可作为大学数学系高年级本科生、研究生和教师的教科书和教学参考书,也可供非线性动力学和动力系统其它方面的学生、教师、工程师、学者和专家学习和参考。

施尔尼科夫,Nizhny Novgorod大学应用数学与控制论研究所教授,当代Nizhny Novgorod学派的带头人,世界著名的动力系统专家,20世纪俄罗斯最杰出的数学家之一,高维系统同宿分支理论的创始人之一。上世纪60年代他解决了横截同宿轨线附近轨线性态的Poincare-Birkhoff古典问题,在同一时期当Smale构造了著名的马蹄映射后不久。L.P.Shilnikov就发现并证明这种马蹄在相对简单的连续动力系统中以自然方式的存在性,这个结果为国际动力系统专家们所赞赏。他还发现动力系统理论中一个重要的基本现象,即具鞍一焦点同宿回路的高维系统可以有周期轨道的可数集,这个结果就是著名的Shilnikov混沌,它被公认为动力系统混沌理论的奠基石之一。他第一个给出全部位于同宿曲线邻域内的轨线集的完全描述;在动力系统的大范围分支理论、动力系统的复杂性...

施尔尼科夫,Nizhny Novgorod大学应用数学与控制论研究所教授,当代Nizhny Novgorod学派的带头人,世界著名的动力系统专家,20世纪俄罗斯最杰出的数学家之一,高维系统同宿分支理论的创始人之一。上世纪60年代他解决了横截同宿轨线附近轨线性态的Poincare-Birkhoff古典问题,在同一时期当Smale构造了著名的马蹄映射后不久。L.P.Shilnikov就发现并证明这种马蹄在相对简单的连续动力系统中以自然方式的存在性,这个结果为国际动力系统专家们所赞赏。他还发现动力系统理论中一个重要的基本现象,即具鞍一焦点同宿回路的高维系统可以有周期轨道的可数集,这个结果就是著名的Shilnikov混沌,它被公认为动力系统混沌理论的奠基石之一。他第一个给出全部位于同宿曲线邻域内的轨线集的完全描述;在动力系统的大范围分支理论、动力系统的复杂性态以及混沌吸引子理论中发表了大量开创性文章,并提出了一些新的应用广泛的方法。

浏览 3
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报