利用OpenCV建立视差图像

AI算法与图像处理

共 4830字,需浏览 10分钟

 ·

2021-01-19 17:08

点击上方AI算法与图像处理”,选择加"星标"或“置顶

重磅干货,第一时间送达


我们都看过3D电影,他们看起来都很酷,这给了我们一个想法,使用一些工具通过改变看图像视角,模拟观众的头部移动。

效果如何?
我们都熟悉
"视差"一术语,它是描述对象在左右眼中的位置差距,视差的大小这取决于我们离它有多远。

视差

因此,如果我们能在2D图像中获得与不同图像层的相同效果,那么我们可以在这些图像中产生类似的感觉,并产生我们想要的酷效果。

让我们分解一下这个过程

深度图

因此,首先,我们需要将图像分解为不同的图层,并且,我们需要一个2D图像的深度图。深度图只是一个黑白图像,其中图像的白色显示对象与镜头的接近度。获得基本图层后,我们需要从每个图层中画出缺失的部分。最后,我们将单个图像分解成不同的图层。现在,我们可以显示不同的图层,这些图层看起来与原始图像相同。现在,我们可以使用相机进行人脸检测,并测量用户头部的移动,然后移动这些图层并进行匹配。

让我们看看如何编写此工具的代码

因此,首先,我们需要导入一些文件,建议使用版本 4.1.0.25 的 OpenCV。

import os, sysimport numpy as npimport pygame as pgimport cv2

现在,我们需要加载图像和深度图,并调整它们的大小以匹配大小。现在,我们将提供一个深度图、代码,但你可以生成自己的模型MiDaS。

img = cv2.imread('moon.jpg', flags=cv2.CV_8UC4)depth_map = cv2.imread('moon_depth_map.png')depth_map = cv2.cvtColor(depth_map,cv2.COLOR_RGB2GRAY)img = cv2.resize(img, depth_map.shape[:2])


现在,在加载深度贴图后,我们可以通过按不同阈值对深度贴图不同图层创建蒙版。在制作一个图层时,我们需要两个蒙版,一个是该图层,另一个是上一层的第二个蒙版,用于画上一个图层的缺失部分。我们将在循环之外取最后一个图层,以便提取此层中的所有剩余部分。

   layers = []     prev_thres = 255div=30     for thres in range(255 - div, 0, -div):           ret, mask = cv2.threshold(depth_map, thres, 255,          cv2.THRESH_BINARY)           ret, prev_mask = cv2.threshold(depth_map, prev_thres, 255, cv2.THRESH_BINARY)            prev_thres = thres           inpaint_img = cv2.inpaint(img, prev_mask, 10, cv2.INPAINT_NS)   layer = cv2.bitwise_and(inpaint_img, inpaint_img, mask = mask)    layers.append(conv_cv_alpha(layer, mask))      # adding last layer    mask = np.zeros(depth_map.shape, np.uint8)    mask[:,:] = 255    ret, prev_mask = cv2.threshold(depth_map, prev_thres, 255, cv2.THRESH_BINARY)     inpaint_img = cv2.inpaint(img, prev_mask, 10, cv2.INPAINT_NS)    layer = cv2.bitwise_and(inpaint_img, inpaint_img, mask = mask)layers.append(conv_cv_alpha(layer, mask))     layers = layers[::-1]

我们已经反转了图层,因此我们可以按最后一个层排列到第一层的顺序排列它们。当我们将图层添加到列表中时,我们使用的是函数[conv_cv_alpha],这将添加 alpha 值(使 RGB 到 RGBA),并使用蒙版使图层的某些部分透明。

def conv_cv_alpha(cv_image, mask):        b, g, r = cv2.split(cv_image)        rgba = [r, g, b, mask]        cv_image = cv2.merge(rgba,4)                  return cv_image

现在来了人脸检测和显示图像的部分。对于人脸检测,我们将使用哈卡卡德。现在,我们将加载 haar 级联进行人脸检测,并创建一个函数,该函数将从图像中返回人脸。

face_cascade = cv2.CascadeClassifier( 'haarcascade_frontalface_default.xml')   
def get_face_rect(img): gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) face_rects = face_cascade.detectMultiScale(gray_img, 1.3, 5) if len(face_rects) == 0: return () return face_rects[0]

现在,我们必须显示图像,将根据用户的头移动。我们将使用OpenCV读取凸轮,然后使用 Pygame将每个帧呈现在彼此的顶部。为了计算每一层的移位,我们将计算从框架中心的头部移位,然后缩小头移位以获得一个小的移位值。之后,我们将每个图层的索引值相乘,以获得相应图层的移位值,还可以乘以一些常量值,以获得更好的结果。

我们将创建一个比原始图像稍小的 Pygame 窗口并加载相机。我们使用了比例,因此您更改其值以使最终结果变大。

scale = 1off_set = 20width, height = layers[0].get_width(), layers[0].get_height()        win = pg.display.set_mode((int((width - off_set)*scale), int((height - off_set)*scale)))    pg.display.set_caption('Parallax_image')scaled_layers = []    for layer in layers:              scaled_layers.append(pg.transform.scale(layer, (int(width*scale), int(height*scale))))cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)

我们将设置一些常量。你可以玩这些常量来获得不同的结果。

x_transform = True     # allow shift in x-axisy_transform = False    # allow shift in y-axissens = 50              # the amount of scale down of shift valueshow_cam = False       # show your face camshift_x = 0    shift_y = 0    run = True

最后,主循环渲染所有图层。

while run:    for event in pg.event.get():        if event.type==pg.QUIT:            run = False    ret, frame = cap.read()    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)    initial_pos = (frame.shape[0]/2, frame.shape[1]/2)    face_rect = get_face_rect(frame)    if len(face_rect) != 0:        x,y,w,h, = face_rect        face_rect_frame = cv2.rectangle(frame, (x, y), (x + w, y + h), (255,255,0), 3)        shift_x = (initial_pos[0] - (x + w/2))/(sens*scale)        shift_y = (initial_pos[1] - (y + h/2))/(sens*scale)    win.fill((255, 255, 255))                     for i, layer in enumerate(scaled_layers):        new_x = -off_set/2        new_y = -off_set/2        if x_transform:            new_x = 0 + shift_x*i        if y_transform:            new_y = 0 + shift_y*i        win.blit(layer, (new_x, new_y))            face_rect_frame = cv2.resize(face_rect_frame, (100, 100))   if show_cam:       win.blit(conv_cv_pygame(face_rect_frame), (0, 0))   pg.display.update()cap.release()cv2.destroyAllWindows()pg.quit()

就是这里,最终结果。


最终结果


不同图像的演示

我已经创建了一个更高级版本的这个工具,你可以只选择图像,它会自动创建视差图像,深度地图将自动生成。

代码链接:https://github.com/strikeraryu/Parallax_Image



个人微信(如果没有备注不拉群!
请注明:地区+学校/企业+研究方向+昵称



下载1:何恺明顶会分享


AI算法与图像处理」公众号后台回复:何恺明,即可下载。总共有6份PDF,涉及 ResNet、Mask RCNN等经典工作的总结分析


下载2:终身受益的编程指南:Google编程风格指南


AI算法与图像处理」公众号后台回复:c++,即可下载。历经十年考验,最权威的编程规范!



下载3 CVPR2020

AI算法与图像处公众号后台回复:CVPR2020即可下载1467篇CVPR 2020论文


觉得不错就点亮在看吧




浏览 36
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报