手把手搞懂接雨水问题的多种解法

共 867字,需浏览 2分钟

 ·

2020-10-29 00:46

读完本文,可以去力扣解决如下题目:

42.接雨水(Hard

接雨水这道题目挺有意思,在面试题中出现频率还挺高的,本文就来步步优化,讲解一下这道题:

就是用一个数组表示一个条形图,问你这个条形图最多能接多少水,函数签名如下:

int trap(int[] height);

下面就来由浅入深介绍暴力解法 -> 备忘录解法 -> 双指针解法,在 O(N) 时间 O(1) 空间内解决这个问题。

一、暴力解法

对于这种问题,我们不要想整体,而应该去想局部;就像之前的文章写的动态规划问题处理字符串问题,不要考虑如何处理整个字符串,而是去思考应该如何处理每一个字符。

这么一想,可以发现这道题的思路其实很简单。具体来说,仅仅对于位置i,能装下多少水呢?

能装 2 格水,因为height[i]的高度为 0,而这里最多能盛 2 格水,2-0=2。

为什么位置i最多能盛 2 格水呢?因为,位置i能达到的水柱高度和其左边的最高柱子、右边的最高柱子有关,我们分别称这两个柱子高度为l_maxr_max位置 i 最大的水柱高度就是min(l_max, r_max)

更进一步,对于位置i,能够装的水为:

water[i] = min(
               # 左边最高的柱子
               max(height[0..i]),  
               # 右边最高的柱子
               max(height[i..end]) 
            ) - height[i]
这就是本问题的核心思路,我们可以简单写一个暴力算法:
int trap(vector<int>& height) {
    int n = height.size();
    int res = 0;
    for (int i = 1; i < n - 1; i++) {
        int l_max = 0, r_max = 0;
        // 找右边最高的柱子
        for (int j = i; j < n; j++)
            r_max = max(r_max, height[j]);
        // 找左边最高的柱子
        for (int j = i; j >= 0; j--)
            l_max = max(l_max, height[j]);
        // 如果自己就是最高的话,
        // l_max == r_max == height[i]
        res += min(l_max, r_max) - height[i];
    }
    return res;
}

有之前的思路,这个解法应该是很直接粗暴的,时间复杂度 O(N^2),空间复杂度 O(1)。但是很明显这种计算r_maxl_max的方式非常笨拙,一般的优化方法就是备忘录。

二、备忘录优化

之前的暴力解法,不是在每个位置i都要计算r_maxl_max吗?我们直接把结果都提前计算出来,别傻不拉几的每次都遍历,这时间复杂度不就降下来了嘛。

我们开两个数组r_maxl_max充当备忘录,l_max[i]表示位置i左边最高的柱子高度,r_max[i]表示位置i右边最高的柱子高度。预先把这两个数组计算好,避免重复计算:

int trap(vector<int>& height) {
    if (height.empty()) return 0;
    int n = height.size();
    int res = 0;
    // 数组充当备忘录
    vector<int> l_max(n), r_max(n);
    // 初始化 base case
    l_max[0] = height[0];
    r_max[n - 1] = height[n - 1];
    // 从左向右计算 l_max
    for (int i = 1; i < n; i++)
        l_max[i] = max(height[i], l_max[i - 1]);
    // 从右向左计算 r_max
    for (int i = n - 2; i >= 0; i--) 
        r_max[i] = max(height[i], r_max[i + 1]);
    // 计算答案
    for (int i = 1; i < n - 1; i++) 
        res += min(l_max[i], r_max[i]) - height[i];
    return res;
}

这个优化其实和暴力解法思路差不多,就是避免了重复计算,把时间复杂度降低为 O(N),已经是最优了,但是空间复杂度是 O(N)。下面来看一个精妙一些的解法,能够把空间复杂度降低到 O(1)。

三、双指针解法

这种解法的思路是完全相同的,但在实现手法上非常巧妙,我们这次也不要用备忘录提前计算了,而是用双指针边走边算,节省下空间复杂度。

首先,看一部分代码:

int trap(vector<int>& height) {
    int n = height.size();
    int left = 0, right = n - 1;

    int l_max = height[0];
    int r_max = height[n - 1];

    while (left <= right) {
        l_max = max(l_max, height[left]);
        r_max = max(r_max, height[right]);
        left++; right--;
    }
}

对于这部分代码,请问l_maxr_max分别表示什么意义呢?

很容易理解,l_maxheight[0..left]中最高柱子的高度,r_maxheight[right..n-1]的最高柱子的高度

明白了这一点,直接看解法:

int trap(vector<int>& height) {
    if (height.empty()) return 0;
    int n = height.size();
    int left = 0, right = n - 1;
    int res = 0;

    int l_max = height[0];
    int r_max = height[n - 1];

    while (left <= right) {
        l_max = max(l_max, height[left]);
        r_max = max(r_max, height[right]);

        // res += min(l_max, r_max) - height[i]
        if (l_max < r_max) {
            res += l_max - height[left];
            left++; 
        } else {
            res += r_max - height[right];
            right--;
        }
    }
    return res;
}

你看,其中的核心思想和之前一模一样,换汤不换药。但是细心的读者可能会发现次解法还是有点细节差异:

之前的备忘录解法,l_max[i]r_max[i]分别代表height[0..i]height[i..n-1]的最高柱子高度。

res += min(l_max[i], r_max[i]) - height[i];

但是双指针解法中,l_maxr_max代表的是height[0..left]height[right..n-1]的最高柱子高度。比如这段代码:

if (l_max < r_max) {
    res += l_max - height[left];
    left++; 

此时的l_maxleft指针左边的最高柱子,但是r_max并不一定是left指针右边最高的柱子,这真的可以得到正确答案吗?

其实这个问题要这么思考,我们只在乎min(l_max, r_max)对于上图的情况,我们已经知道l_max < r_max了,至于这个r_max是不是右边最大的,不重要。重要的是height[i]能够装的水只和较低的l_max之差有关

这样,接雨水问题就解决了,学会了吗?三连安排!



浏览 22
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报