9大主题卷积神经网络(CNN)的PyTorch实现

极市平台

共 4828字,需浏览 10分钟

 ·

2020-08-20 11:30

↑ 点击蓝字 关注极市平台

作者丨红色石头
来源丨AI有道

极市导读

 

从R-CNN到YOLO v3再到M2Det,近年来的目标检测新模型层出不穷,性能也越来越好。本文介绍了它们的PyTorch实现,目前Github已开源,非常实用。>>就在明天,极市直播:极市直播丨张志鹏:Ocean/Ocean+: 实时目标跟踪分割算法,小代价,大增益|ECCV2020


大家还记得这张图吗?


纵观 2013 年到 2020 年的52个目标检模型,从最早的 R-CNN、OverFeat 到后来的 SSD、YOLO v3 再到去年的 M2Det,新模型层出不穷,性能也越来越好。之前介绍了一份非常不错的资源,聚焦于源码和论文,还有对于各种卷积神经网络模型的实现,Github地址如下:

https://github.com/hoya012/deep_learning_object_detection

而本文将介绍一个新的Github资源——它们的 PyTorch 实现,非常有用!

Github地址:
https://github.com/shanglianlm0525/PyTorch-Networks


先来个介绍,该系列的卷积神经网络实现包含了 9 大主题,目录如下:

1. 典型网络
2. 轻量级网络
3. 目标检测网络
4. 语义分割网络
5. 实例分割网络
6. 人脸检测和识别网络
7. 人体姿态识别网络
8. 注意力机制网络
9. 人像分割网络

下面具体来看一下:

1 典型网络(Classical network)


典型的卷积神经网络包括:AlexNet、VGG、ResNet、InceptionV1、InceptionV2、InceptionV3、InceptionV4、Inception-ResNet。


以 AlexNet 网络为例,AlexNet 是 2012 年 ImageNet 竞赛冠军获得者 Hinton 和他的学生 Alex Krizhevsky 设计的。AlexNet 中包含了几个比较新的技术点,也首次在 CNN 中成功应用了 ReLU、Dropout 和 LRN 等 Trick。同时 AlexNet 也使用了 GPU 进行运算加速。


AlexNet 网络结构的 PyTorch 实现方式如下:

import torchimport torch.nn as nn
def Conv3x3BNReLU(in_channels,out_channels,stride,padding=1): return nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU6(inplace=True) )
def Conv1x1BNReLU(in_channels,out_channels): return nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(out_channels), nn.ReLU6(inplace=True) )
def ConvBNReLU(in_channels,out_channels,kernel_size,stride,padding=1): return nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding), nn.BatchNorm2d(out_channels), nn.ReLU6(inplace=True) )
def ConvBN(in_channels,out_channels,kernel_size,stride,padding=1): return nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding), nn.BatchNorm2d(out_channels) )
class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels): super(ResidualBlock, self).__init__() mid_channels = out_channels//2
self.bottleneck = nn.Sequential( ConvBNReLU(in_channels=in_channels, out_channels=mid_channels, kernel_size=1, stride=1), ConvBNReLU(in_channels=mid_channels, out_channels=mid_channels, kernel_size=3, stride=1, padding=1), ConvBNReLU(in_channels=mid_channels, out_channels=out_channels, kernel_size=1, stride=1), ) self.shortcut = ConvBNReLU(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1)
def forward(self, x): out = self.bottleneck(x) return out+self.shortcut(x)

轻量级网络(Lightweight)


轻量级网络包括:GhostNet、MobileNets、MobileNetV2、MobileNetV3、ShuffleNet、ShuffleNet V2、SqueezeNet Xception MixNet GhostNet。


以 GhostNet 为例,同样精度,速度和计算量均少于此前 SOTA 算法。GhostNet 的核心是 Ghost 模块,与普通卷积神经网络相比,在不更改输出特征图大小的情况下,其所需的参数总数和计算复杂度均已降低,而且即插即用。


GhostNet 网络结构的 PyTorch 实现方式如下:

https://github.com/shanglianlm0525/PyTorch-
Networks/blob/master/Lightweight/GhostNet.py
3 目标检测网络(ObjectDetection)

目标检测网络包括:SSD、YOLO、YOLOv2、YOLOv3、FCOS、FPN、RetinaNet Objects as Points、FSAF、CenterNet FoveaBox。


以 YOLO 系列为例,YOLO(You Only Look Once)是一种基于深度神经网络的对象识别和定位算法,其最大的特点是运行速度很快,可以用于实时系统。目前 YOLOv3 应用比较多。


YOLOV3 网络结构的 PyTorch 实现方式如下:

https://github.com/shanglianlm0525/PyTorch-Networks/blob/master/ObjectDetection/YOLOv3.py
4 语义分割网络(SemanticSegmentation)

语义分割网络包括:FCN、Fast-SCNN、LEDNet、LRNNet、FisheyeMODNet。


以 FCN 为例,FCN 诞生于 2014 的语义分割模型先驱,主要贡献为在语义分割问题中推广使用端对端卷积神经网络,使用反卷积进行上采样。FCN 模型非常简单,里面全部是由卷积构成的,所以被称为全卷积网络,同时由于全卷积的特殊形式,因此可以接受任意大小的输入。


FCN 网络结构的 PyTorch 实现方式如下:

https://github.com/shanglianlm0525/PyTorch-Networks/blob/master/SemanticSegmentation/FCN.py

5 实例分割网络(InstanceSegmentation)

实例分割网络包括:PolarMask。

6 人脸检测和识别网络(commit VarGFaceNet)

人脸检测和识别网络包括:FaceBoxes、LFFD、VarGFaceNet。

7 人体姿态识别网络(HumanPoseEstimation)


人体姿态识别网络包括:Stacked Hourglass、Networks Simple Baselines、LPN。

8 注意力机制网络

注意力机制网络包括:SE Net、scSE、NL Net、GCNet、CBAM。

9 人像分割网络(PortraitSegmentation)


人像分割网络包括:SINet。

综上,该 GitHub 开源项目展示了近些年来主流的 9 大类卷积神经网络,总共包含了几十种具体的网络结构。其中每个网络结构都有 PyTorch 实现方式。还是很不错的。

最后再放上 GitHub 开源地址:

https://github.com/shanglianlm0525/PyTorch-Networks


推荐阅读




添加极市小助手微信(ID : cvmart2),备注:姓名-学校/公司-研究方向-城市(如:小极-北大-目标检测-深圳),即可申请加入极市目标检测/图像分割/工业检测/人脸/医学影像/3D/SLAM/自动驾驶/超分辨率/姿态估计/ReID/GAN/图像增强/OCR/视频理解等技术交流群:月大咖直播分享、真实项目需求对接、求职内推、算法竞赛、干货资讯汇总、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企视觉开发者互动交流~

△长按添加极市小助手

△长按关注极市平台,获取最新CV干货

觉得有用麻烦给个在看啦~  


浏览 45
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报