client-go 之 Reflector 源码分析
共 3643字,需浏览 8分钟
·
2020-08-23 15:17
图片来源:https://unsplash.com/photos/mFl5WwGJnTs
前面我们说了 Informer 通过对 APIServer 的资源对象执行 List 和 Watch 操作,把获取到的数据存储在本地的缓存中,其中实现这个的核心功能就是 Reflector,我们可以称其为反射器,从名字我们可以看出来它的主要功能就是反射,就是将 Etcd 里面的数据反射到本地存储(DeltaFIFO)中。Reflector 首先通过 List 操作获取所有的资源对象数据,保存到本地存储,然后通过 Watch 操作监控资源的变化,触发相应的事件处理,比如前面示例中的 Add 事件、Update 事件、Delete 事件。
Reflector 结构体的定义位于 staging/src/k8s.io/client-go/tools/cache/reflector.go
下面:
// k8s.io/client-go/tools/cache/reflector.go
// Reflector(反射器) 监听指定的资源,将所有的变化都反射到给定的存储中去
type Reflector struct {
// name 标识这个反射器的名称,默认为 文件:行数(比如reflector.go:125)
// 默认名字通过 k8s.io/apimachinery/pkg/util/naming/from_stack.go 下面的 GetNameFromCallsite 函数生成
name string
// 期望放到 Store 中的类型名称,如果提供,则是 expectedGVK 的字符串形式
// 否则就是 expectedType 的字符串,它仅仅用于显示,不用于解析或者比较。
expectedTypeName string
// 我们放到 Store 中的对象类型
expectedType reflect.Type
// 如果是非结构化的,我们期望放在 Sotre 中的对象的 GVK
expectedGVK *schema.GroupVersionKind
// 与 watch 源同步的目标 Store
store Store
// 用来执行 lists 和 watches 操作的 listerWatcher 接口(最重要的)
listerWatcher ListerWatcher
// backoff manages backoff of ListWatch
backoffManager wait.BackoffManager
resyncPeriod time.Duration
// ShouldResync 会周期性的被调用,当返回 true 的时候,就会调用 Store 的 Resync 操作
ShouldResync func() bool
clock clock.Clock
paginatedResult bool
// Kubernetes 资源在 APIServer 中都是有版本的,对象的任何修改(添加、删除、更新)都会造成资源版本更新,lastSyncResourceVersion 就是指的这个版本
lastSyncResourceVersion string
// 如果之前的 list 或 watch 带有 lastSyncResourceVersion 的请求中是一个 HTTP 410(Gone)的失败请求,则 isLastSyncResourceVersionGone 为 true
isLastSyncResourceVersionGone bool
// lastSyncResourceVersionMutex 用于保证对 lastSyncResourceVersion 的读/写访问。
lastSyncResourceVersionMutex sync.RWMutex
WatchListPageSize int64
}
// NewReflector 创建一个新的反射器对象,将使给定的 Store 保持与服务器中指定的资源对象的内容同步。
// 反射器只把具有 expectedType 类型的对象放到 Store 中,除非 expectedType 是 nil。
// 如果 resyncPeriod 是非0,那么反射器会周期性地检查 ShouldResync 函数来决定是否调用 Store 的 Resync 操作
// `ShouldResync==nil` 意味着总是要执行 Resync 操作。
// 这使得你可以使用反射器周期性地处理所有的全量和增量的对象。
func NewReflector(lw ListerWatcher, expectedType interface{}, store Store, resyncPeriod time.Duration) *Reflector {
// 默认的反射器名称为 file:line
return NewNamedReflector(naming.GetNameFromCallsite(internalPackages...), lw, expectedType, store, resyncPeriod)
}
// NewNamedReflector 与 NewReflector 一样,只是指定了一个 name 用于日志记录
func NewNamedReflector(name string, lw ListerWatcher, expectedType interface{}, store Store, resyncPeriod time.Duration) *Reflector {
realClock := &clock.RealClock{}
r := &Reflector{
name: name,
listerWatcher: lw,
store: store,
backoffManager: wait.NewExponentialBackoffManager(800*time.Millisecond, 30*time.Second, 2*time.Minute, 2.0, 1.0, realClock),
resyncPeriod: resyncPeriod,
clock: realClock,
}
r.setExpectedType(expectedType)
return r
}
从源码中我们可以看出来通过 NewReflector
实例化反射器的时候,必须传入一个 ListerWatcher
接口对象,这个也是反射器最核心的功能,该接口拥有 List 和 Watch 方法,用于获取和监控资源对象。
// k8s.io/client-go/tools/cache/listwatch.go
// Lister 是知道如何执行初始化List列表的对象
type Lister interface {
// List 应该返回一个列表类型的对象;
// Items 字段将被解析,ResourceVersion 字段将被用于正确启动 watch 的地方
List(options metav1.ListOptions) (runtime.Object, error)
}
// Watcher 是知道如何执行 watch 操作的任何对象
type Watcher interface {
// Watch 在指定的版本开始执行 watch 操作
Watch(options metav1.ListOptions) (watch.Interface, error)
}
// ListerWatcher 是任何知道如何对一个资源执行初始化List列表和启动Watch监控操作的对象
type ListerWatcher interface {
Lister
Watcher
}
而 Reflector 对象通过 Run 函数来启动监控并处理监控事件的:
// k8s.io/client-go/tools/cache/reflector.go
// Run 函数反复使用反射器的 ListAndWatch 函数来获取所有对象和后续的 deltas。
// 当 stopCh 被关闭的时候,Run函数才会退出。
func (r *Reflector) Run(stopCh <-chan struct{}) {
klog.V(2).Infof("Starting reflector %s (%s) from %s", r.expectedTypeName, r.resyncPeriod, r.name)
wait.BackoffUntil(func() {
if err := r.ListAndWatch(stopCh); err != nil {
utilruntime.HandleError(err)
}
}, r.backoffManager, true, stopCh)
klog.V(2).Infof("Stopping reflector %s (%s) from %s", r.expectedTypeName, r.resyncPeriod, r.name)
}
所以不管我们传入的 ListWatcher 对象是如何实现的 List 和 Watch 操作,只要实现了就可以,最主要的还是看 ListAndWatch 函数是如何去实现的,如何去调用 List 和 Watch 的:
// k8s.io/client-go/tools/cache/reflector.go
// ListAndWatch 函数首先列出所有的对象,并在调用的时候获得资源版本,然后使用该资源版本来进行 watch 操作。
// 如果 ListAndWatch 没有初始化 watch 成功就会返回错误。
func (r *Reflector) ListAndWatch(stopCh <-chan struct{}) error {
klog.V(3).Infof("Listing and watching %v from %s", r.expectedTypeName, r.name)
var resourceVersion string
options := metav1.ListOptions{ResourceVersion: r.relistResourceVersion()}
if err := func() error {
initTrace := trace.New("Reflector ListAndWatch", trace.Field{"name", r.name})
defer initTrace.LogIfLong(10 * time.Second)
var list runtime.Object
var paginatedResult bool
var err error
listCh := make(chan struct{}, 1)
panicCh := make(chan interface{}, 1)
go func() {
defer func() {
if r := recover(); r != nil {
panicCh <- r
}
}()
// 如果 listWatcher 支持,会尝试 chunks(分块)收集 List 列表数据
// 如果不支持,第一个 List 列表请求将返回完整的响应数据。
pager := pager.New(pager.SimplePageFunc(func(opts metav1.ListOptions) (runtime.Object, error) {
return r.listerWatcher.List(opts)
}))
switch {
case r.WatchListPageSize != 0:
pager.PageSize = r.WatchListPageSize
case r.paginatedResult:
// 获得一个初始的分页结果。假定此资源和服务器符合分页请求,并保留默认的分页器大小设置
case options.ResourceVersion != "" && options.ResourceVersion != "0":
pager.PageSize = 0
}
list, paginatedResult, err = pager.List(context.Background(), options)
if isExpiredError(err) {
r.setIsLastSyncResourceVersionExpired(true)
list, paginatedResult, err = pager.List(context.Background(), metav1.ListOptions{ResourceVersion: r.relistResourceVersion()})
}
close(listCh)
}()
select {
case <-stopCh:
return nil
case r := <-panicCh:
panic(r)
case <-listCh:
}
if err != nil {
return fmt.Errorf("%s: Failed to list %v: %v", r.name, r.expectedTypeName, err)
}
if options.ResourceVersion == "0" && paginatedResult {
r.paginatedResult = true
}
r.setIsLastSyncResourceVersionExpired(false) // list 成功
initTrace.Step("Objects listed")
listMetaInterface, err := meta.ListAccessor(list)
if err != nil {
return fmt.Errorf("%s: Unable to understand list result %#v: %v", r.name, list, err)
}
// 获取资源版本号
resourceVersion = listMetaInterface.GetResourceVersion()
initTrace.Step("Resource version extracted")
// 将资源数据转换成资源对象列表,将 runtime.Object 对象转换成 []runtime.Object 对象
items, err := meta.ExtractList(list)
if err != nil {
return fmt.Errorf("%s: Unable to understand list result %#v (%v)", r.name, list, err)
}
initTrace.Step("Objects extracted")
// 将资源对象列表中的资源对象和资源版本号存储在 Store 中
if err := r.syncWith(items, resourceVersion); err != nil {
return fmt.Errorf("%s: Unable to sync list result: %v", r.name, err)
}
initTrace.Step("SyncWith done")
r.setLastSyncResourceVersion(resourceVersion)
initTrace.Step("Resource version updated")
return nil
}(); err != nil {
return err
}
resyncerrc := make(chan error, 1)
cancelCh := make(chan struct{})
defer close(cancelCh)
go func() {
resyncCh, cleanup := r.resyncChan()
defer func() {
cleanup()
}()
for {
select {
case <-resyncCh:
case <-stopCh:
return
case <-cancelCh:
return
}
// 如果 ShouldResync 为 nil 或者调用返回true,则执行 Store 的 Resync 操作
if r.ShouldResync == nil || r.ShouldResync() {
klog.V(4).Infof("%s: forcing resync", r.name)
if err := r.store.Resync(); err != nil {
resyncerrc <- err
return
}
}
cleanup()
resyncCh, cleanup = r.resyncChan()
}
}()
for {
// stopCh 一个停止循环的机会
select {
case <-stopCh:
return nil
default:
}
timeoutSeconds := int64(minWatchTimeout.Seconds() * (rand.Float64() + 1.0))
// 设置watch的选项,因为前期列举了全量对象,从这里只要监听最新版本以后的资源就可以了
// 如果没有资源变化总不能一直挂着吧?也不知道是卡死了还是怎么了,所以设置一个超时会好一点
options = metav1.ListOptions{
ResourceVersion: resourceVersion,
TimeoutSeconds: &timeoutSeconds,
AllowWatchBookmarks: true,
}
start := r.clock.Now()
// 执行 Watch 操作
w, err := r.listerWatcher.Watch(options)
if err != nil {
switch {
case isExpiredError(err):
klog.V(4).Infof("%s: watch of %v closed with: %v", r.name, r.expectedTypeName, err)
case err == io.EOF:
// watch closed normally
case err == io.ErrUnexpectedEOF:
klog.V(1).Infof("%s: Watch for %v closed with unexpected EOF: %v", r.name, r.expectedTypeName, err)
default:
utilruntime.HandleError(fmt.Errorf("%s: Failed to watch %v: %v", r.name, r.expectedTypeName, err))
}
if utilnet.IsConnectionRefused(err) {
time.Sleep(time.Second)
continue
}
return nil
}
// 调用 watchHandler 来处理分发 watch 到的事件对象
if err := r.watchHandler(start, w, &resourceVersion, resyncerrc, stopCh); err != nil {
if err != errorStopRequested {
switch {
case isExpiredError(err):
klog.V(4).Infof("%s: watch of %v closed with: %v", r.name, r.expectedTypeName, err)
default:
klog.Warningf("%s: watch of %v ended with: %v", r.name, r.expectedTypeName, err)
}
}
return nil
}
}
}
首先通过反射器的 relistResourceVersion
函数获得反射器 relist 的资源版本,如果资源版本非 0,则表示根据资源版本号继续获取,当传输过程中遇到网络故障或者其他原因导致中断,下次再连接时,会根据资源版本号继续传输未完成的部分。可以使本地缓存中的数据与Etcd集群中的数据保持一致,该函数实现如下所示:
// k8s.io/client-go/tools/cache/reflector.go
// relistResourceVersion 决定了反射器应该list或者relist的资源版本。
// 如果最后一次relist的结果是HTTP 410(Gone)状态码,则返回"",这样relist将通过quorum读取etcd中可用的最新资源版本。
// 返回使用 lastSyncResourceVersion,这样反射器就不会使用在relist结果或watch事件中watch到的资源版本更老的资源版本进行relist了
func (r *Reflector) relistResourceVersion() string {
r.lastSyncResourceVersionMutex.RLock()
defer r.lastSyncResourceVersionMutex.RUnlock()
if r.isLastSyncResourceVersionGone {
// 因为反射器会进行分页List请求,如果 lastSyncResourceVersion 过期了,所有的分页列表请求就都会跳过 watch 缓存
// 所以设置 ResourceVersion="",然后再次 List,重新建立反射器到最新的可用资源版本,从 etcd 中读取,保持一致性。
return ""
}
if r.lastSyncResourceVersion == "" {
// 反射器执行的初始 List 操作的时候使用0作为资源版本。
return "0"
}
return r.lastSyncResourceVersion
}
上面的 ListAndWatch 函数实现看上去虽然非常复杂,但其实大部分是对分页的各种情况进行处理,最核心的还是调用 r.listerWatcher.List(opts)
获取全量的资源对象,而这个 List 其实 ListerWatcher 实现的 List 方法,这个 ListerWatcher 接口实际上在该接口定义的同一个文件中就有一个 ListWatch 结构体实现了:
// k8s.io/client-go/tools/cache/listwatch.go
// ListFunc 知道如何 List 资源
type ListFunc func(options metav1.ListOptions) (runtime.Object, error)
// WatchFunc 知道如何 watch 资源
type WatchFunc func(options metav1.ListOptions) (watch.Interface, error)
// ListWatch 结构体知道如何 list 和 watch 资源对象,它实现了 ListerWatcher 接口。
// 它为 NewReflector 使用者提供了方便的函数。其中 ListFunc 和 WatchFunc 不能为 nil。
type ListWatch struct {
ListFunc ListFunc
WatchFunc WatchFunc
// DisableChunking 对 list watcher 请求不分块。
DisableChunking bool
}
// 列出一组 APIServer 资源
func (lw *ListWatch) List(options metav1.ListOptions) (runtime.Object, error) {
return lw.ListFunc(options)
}
// Watch 一组 APIServer 资源
func (lw *ListWatch) Watch(options metav1.ListOptions) (watch.Interface, error) {
return lw.WatchFunc(options)
}
当我们真正使用一个 Informer 对象的时候,实例化的时候就会调用这里的 ListWatch 来进行初始化,比如前面我们实例中使用的 Deployment Informer,
// k8s.io/client-go/informers/apps/v1/deployment.go
// NewFilteredDeploymentInformer 为 Deployment 构造一个新的 Informer。
// 总是倾向于使用一个 informer 工厂来获取一个 shared informer,而不是获取一个独立的 informer,这样可以减少内存占用和服务器的连接数。
func NewFilteredDeploymentInformer(client kubernetes.Interface, namespace string, resyncPeriod time.Duration, indexers cache.Indexers, tweakListOptions internalinterfaces.TweakListOptionsFunc) cache.SharedIndexInformer {
return cache.NewSharedIndexInformer(
&cache.ListWatch{
ListFunc: func(options metav1.ListOptions) (runtime.Object, error) {
if tweakListOptions != nil {
tweakListOptions(&options)
}
return client.AppsV1().Deployments(namespace).List(context.TODO(), options)
},
WatchFunc: func(options metav1.ListOptions) (watch.Interface, error) {
if tweakListOptions != nil {
tweakListOptions(&options)
}
return client.AppsV1().Deployments(namespace).Watch(context.TODO(), options)
},
},
&appsv1.Deployment{},
resyncPeriod,
indexers,
)
}
func (f *deploymentInformer) defaultInformer(client kubernetes.Interface, resyncPeriod time.Duration) cache.SharedIndexInformer {
return NewFilteredDeploymentInformer(client, f.namespace, resyncPeriod, cache.Indexers{cache.NamespaceIndex: cache.MetaNamespaceIndexFunc}, f.tweakListOptions)
}
func (f *deploymentInformer) Informer() cache.SharedIndexInformer {
return f.factory.InformerFor(&appsv1.Deployment{}, f.defaultInformer)
}
从上面代码我们就可以看出来当我们去调用一个资源对象的 Informer() 的时候,就会去调用上面的 NewFilteredDeploymentInformer
函数进行初始化,而在初始化的使用就传入了 cache.ListWatch
对象,其中就有 List 和 Watch 的实现操作,也就是说前面反射器在 ListAndWatch 里面调用的 ListWatcher 的 List 操作是在一个具体的资源对象的 Informer 中实现的,比如我们这里就是通过的 ClientSet 客户端与 APIServer 交互获取到 Deployment 的资源列表数据的,通过在 ListFunc 中的 client.AppsV1().Deployments(namespace).List(context.TODO(), options)
实现的,这下应该好理解了吧。
获取到了全量的 List 数据过后,通过 listMetaInterface.GetResourceVersion()
来获取资源的版本号,ResourceVersion(资源版本号)非常重要,Kubernetes 中所有的资源都拥有该字段,它标识当前资源对象的版本号,每次修改(CUD)当前资源对象时,Kubernetes API Server 都会更改 ResourceVersion,这样 client-go 执行 Watch 操作时可以根据ResourceVersion 来确定当前资源对象是否发生了变化。
然后通过 meta.ExtractList 函数将资源数据转换成资源对象列表,将 runtime.Object
对象转换成 []runtime.Object
对象,因为全量获取的是一个资源列表。
接下来是通过反射器的 syncWith
函数将资源对象列表中的资源对象和资源版本号存储在 Store 中,这个会在后面的章节中详细说明。
最后处理完成后通过 r.setLastSyncResourceVersion(resourceVersion)
操作来设置最新的资源版本号,其他的就是启动一个 goroutine 去定期检查是否需要执行 Resync 操作,调用存储中的 r.store.Resync()
来执行,关于存储的实现在后面和大家进行讲解。
紧接着就是 Watch 操作了,Watch 操作通过 HTTP 协议与 APIServer 建立长连接,接收Kubernetes API Server 发来的资源变更事件,和 List 操作一样,Watch 的真正实现也是具体的 Informer 初始化的时候传入的,比如上面的 Deployment Informer 中初始化的时候传入的 WatchFunc,底层也是通过 ClientSet 客户端对 Deployment 执行 Watch 操作 client.AppsV1().Deployments(namespace).Watch(context.TODO(), options)
实现的。
获得 watch 的资源数据后,通过调用 r.watchHandler
来处理资源的变更事件,当触发Add 事件、Update 事件、Delete 事件时,将对应的资源对象更新到本地缓存(DeltaFIFO)中并更新 ResourceVersion 资源版本号。
// k8s.io/client-go/tools/cache/reflector.go
// watchHandler 监听 w 保持资源版本最新
func (r *Reflector) watchHandler(start time.Time, w watch.Interface, resourceVersion *string, errc chan error, stopCh <-chan struct{}) error {
eventCount := 0
defer w.Stop()
loop:
for {
select {
case <-stopCh:
return errorStopRequested
case err := <-errc:
return err
case event, ok := <-w.ResultChan(): // 从 watch 中获取事件对象
if !ok {
break loop
}
if event.Type == watch.Error {
return apierrors.FromObject(event.Object)
}
if r.expectedType != nil {
if e, a := r.expectedType, reflect.TypeOf(event.Object); e != a {
utilruntime.HandleError(fmt.Errorf("%s: expected type %v, but watch event object had type %v", r.name, e, a))
continue
}
}
if r.expectedGVK != nil {
if e, a := *r.expectedGVK, event.Object.GetObjectKind().GroupVersionKind(); e != a {
utilruntime.HandleError(fmt.Errorf("%s: expected gvk %v, but watch event object had gvk %v", r.name, e, a))
continue
}
}
meta, err := meta.Accessor(event.Object)
if err != nil {
utilruntime.HandleError(fmt.Errorf("%s: unable to understand watch event %#v", r.name, event))
continue
}
// 获得当前 watch 到资源的资源版本号
newResourceVersion := meta.GetResourceVersion()
switch event.Type { // 分发事件
case watch.Added: // Add 事件
err := r.store.Add(event.Object)
if err != nil {
utilruntime.HandleError(fmt.Errorf("%s: unable to add watch event object (%#v) to store: %v", r.name, event.Object, err))
}
case watch.Modified: // Update 事件
err := r.store.Update(event.Object)
if err != nil {
utilruntime.HandleError(fmt.Errorf("%s: unable to update watch event object (%#v) to store: %v", r.name, event.Object, err))
}
case watch.Deleted: // Delete 事件
err := r.store.Delete(event.Object)
if err != nil {
utilruntime.HandleError(fmt.Errorf("%s: unable to delete watch event object (%#v) from store: %v", r.name, event.Object, err))
}
case watch.Bookmark:
// `Bookmark` 意味着 watch 已经同步到这里了,只要更新资源版本即可。
default:
utilruntime.HandleError(fmt.Errorf("%s: unable to understand watch event %#v", r.name, event))
}
// 更新资源版本号
*resourceVersion = newResourceVersion
r.setLastSyncResourceVersion(newResourceVersion)
eventCount++
}
}
watchDuration := r.clock.Since(start)
if watchDuration < 1*time.Second && eventCount == 0 {
return fmt.Errorf("very short watch: %s: Unexpected watch close - watch lasted less than a second and no items received", r.name)
}
klog.V(4).Infof("%s: Watch close - %v total %v items received", r.name, r.expectedTypeName, eventCount)
return nil
}
这就是 Reflector 反射器中最核心的 ListAndWatch
实现,从上面的实现我们可以看出获取到的数据最终都流向了本地的 Store,也就是 DeltaFIFO,所以接下来我们需要来分析 DeltaFIFO 的实现。
K8S进阶训练营,点击下方图片了解详情