图解:什么是 B+树 ? (查找篇)

共 2140字,需浏览 5分钟

 ·

2020-07-04 23:21

来源:景禹

作者:景禹

前面谈了 B+树的基本概念,今日主要说一下 B+树的查找操作。

e3be5986a32fe7e08e7fab15be831e95.webp

下面所有的查找操作都是在上面这颗 B+树上进行了,为此,我们先仔细观察一下这颗B+树(毫不隐瞒,这颗 B+树出自于严蔚敏老师的数据结构教材)。

第一点:B+树中的所有数据均保存在叶子结点,且根结点和内部结点均只是充当控制查找记录的媒介,并不代表数据本身,所有的内部结点元素都同时存在于子结点中,是子节点元素中是最大(或最小)元素。

3621b1db48a2ee7634cc9ad7e119abc0.webp

比如 B+ 树中的结点 59 (结点 15、44、97、72 类似),是其子结点 [15、44、59] 中的最大元素,也是叶子结点 [51、59] 中的最大元素。所有的数据 [10、15、21、37、44、51、59、63、72、85、91、97] 均保存在叶子结点之中,而根结点 [59、97] 及内部结点 [15、44、59][72、97] 均不是数据本身,只是充当控制查找记录的媒介。

需要注意的是,根结点的最大元素 97 是整颗 B+树当中最大的元素,无论之后在叶子结点中插入或删除多少元素,始终要保证最大元素在根结点当中,这个讲插入和删除时还会看到。

第二点:每一个叶子结点都有指向下一个叶子结点的 指针,便捷之处就在于之后我们将看到的区间查找。

cc025c58bcba29c704405507012e639a.webp

查询单个元素

我们以查询 59 为例进行说明。

e3be5986a32fe7e08e7fab15be831e95.webp

第一次磁盘 I/O :访问根结点 [59、97] ,发现 59 小于等于  [59、97] 中的 59 ,则访问根结点的第一个孩子结点。

ab7e1ba9bd7d876d4eab06f06d55a874.webp

第二次磁盘 I/O : 访问结点 [15、44、59] ,发现 59 大于 44 且小于等于 59 ,则访问当前结点的第三个孩子结点 [51、59] .

658b0db62ebc8ff1de8eecc2f533160c.webp

第三次磁盘 I/O :访问叶子结点 [51、59] ,顺序遍历结点内部,找到要查找的元素 59 .

a672983c9f75572fac82328372cc86c1.webp

我想你已经注意到了和 B-树的区别,对于 B+树中单个元素的查找而言,每一个元素都有相同的磁盘 I/O操作次数,即使查询的元素出现在根结点中,但那只是一个充当控制查找记录的媒介,并不是数据本身,数据真正存在于叶子结点当中,所以 B+树中查找任何一个元素都要从根结点一直走到叶子结点才可以。

816e1fb3d419986f2949ac99773a832b.webp

B+树的非叶子结点均不存储 Data (即 ,官方将其称为卫星数据) ,所以与 B-树相比,同样大小的磁盘页,B+树的非叶子结点可以存储更多的索引(关键字),这也就意味着在数据量相同的情况下,B+树的结构比 B-树更加 “矮胖”,查询时磁盘 I/O 次数会更少。

注意: B-树的查询性能并不稳定,对于根结点中关键字可能只有一次磁盘 I/O,而对于叶子结点中的关键字需要树的高度次磁盘 I/O 操作。

9504c221891aa62c037f7199fde9769b.webp

比如查找上图 B-树中的关键字 59 仅需要一次磁盘 I/O 操作,关键字 21 需要 3 次磁盘 I/O,关键字 72 需要 2 次磁盘 I/O.

B+树所有查询所有关键字的磁盘 I/O 的次数都是树的高度。

区间查询

为了更清楚地看到 B+树进行区间查询的优势,我们以查询下面的 B-树中大于等于21 ,小于等于63的关键字为例进行说明。

9504c221891aa62c037f7199fde9769b.webp

第一步:访问 B-树的根结点 [59] ,发现 2159 小,则访问根结点的第一个孩子 [15、44] .

f10245a5198897821be0160a3239af11.webp

第二步:访问结点  [15、44] ,发现 21 大于 15 且小于 44 ,则访问当前结点的第二个孩子结点 [21、37]

dc5711aced060497944bece50fef135d.webp

第三步:访问结点 [21、37] , 找到区间的左端点 21 ,然后从该关键字 21 开始,进行中序遍历,依次为关键字 37 、44、51、59,直到遍历到区间的右端点 63 为止, 不考虑中序遍历过程的压栈和入栈操作,磁盘 I/O 次数多了 2次,即访问结点 72 和结点 63 并加载进内存。

1c332a9b6ea27df84d1777e0624069c3.webp

而 B+树进行区间查找,简直要舒服的不要不要的。同样是查找区间 [21,63] 之间的关键字。

e3be5986a32fe7e08e7fab15be831e95.webp

第一步:访问根结点 [59、97] , 发现区间的左端点 21 小于 59, 则访问第一个孩子结点 [15、44、59] .

ab7e1ba9bd7d876d4eab06f06d55a874.webp

第二步:访问结点 [15、44、59]  ,发现 21 大于 15 且小于 44 ,则访问第二个孩子结点 [21、37,44] .

3211a672a717956deaa0365dfad3d135.webp

第三步:访问结点 [21、37,44]  ,找到了左端点 21 ,此时 B+树的优越性就出来了,不再需要中序遍历,而是相当于单链表的遍历,直接从左端点 21 开始一直遍历到左端点 63 即可,没有任何额外的磁盘 I/O 操作。

474af7db5bec9d5d7e34f99d5c2b9622.webp

综合来看 B+树的优势就是:

  1. 查找时磁盘 I/O 次数更少,因为 B+树的非叶子结点可以存储更多的关键字,数据量相同的情况下,B+树更加 “矮胖” ,效率更高。
  2. B+树查询所有关键字的磁盘 I/O 次数都一样,查询效率稳定。
  3. B+树进行区间查找时更加简便实用。

此外给大家推荐一篇博文 MySQL索引背后的数据结构及算法原理(http://blog.codinglabs.org/articles/theory-of-mysql-index.html) ,其中对于MySQL 索引为什么采用 B+树,以及InnoDB表为什么必须有主键,并且为什么推荐使用自增主键都有解释,需要的朋友可以自提,我就不再造轮子了。

浏览 61
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报