熬了几个大夜,学完一套985博士总结的Pytorch学习笔记(20G高清/PPT/代码)
共
1799字,需浏览
4分钟
·
2021-10-12 18:57
作为一名AI工程师,掌握一门深度学习框架是必备的生存技能之一。自 TensorFlow 从 Google 中脱颖而出以来,它在研究和商业领域成为最受欢迎的开源深度学习框架,紧接着 从 Facebook 诞生的 PyTorch 由于社区推动的易用性改进和越来越广泛的用例部署,而迅速赶上TensorFlow。两个框架在当年一度备受争议,TensorFlow和PyTorch谁更好?从去年校招开始到现在负责部门的面试,从我手上流走的简历多多少少也有上百封了。面试了很多候选人,当问他们常用的深度学习框架时,发现他们清一色的选择了:PyTorch。从各个方面可以看出,经过这些年的发展,PyTorch在学术圈的「垄断」地位基本已经站稳。诚然,比起TensorFlow,大多数研究人员更偏爱PyTorch的API,PyTorch设计更科学,而TensorFlow自推出2.0版本后,与TF 1.x 的API差异实在不小,导致doc的阅读成本和版本适配成本都相当高。如果是初学者,无脑Pytorch就对了。社区资源多、开源代码多、上手也很简单,各大厂商对Pytorch的支持也多(TensorRT、ONNX)。其实框架的作用就是我们无需造轮子可以直接使用,并且节省工作量,对于Pytorch来说对研究友好、对训练友好、对白嫖大佬的开源代码也友好,对模型部署也友好,可以节省大把时间去做其他有意义的事情,没有理由不使用Pytorch。如果是工作了,就看公司在用什么吧,因为公司是面向需求的。在业界,无论算法性能有多好,总归还是要上线的,选择框架的时候便会考虑以下这些问题,是否方便部署到线上,支持多语言,并且有较好的系统稳定性以及有非常多线上应用实例。TF 1.x系列面世较早,在学术界、工业界都有很深的积淀,工业界由于项目更重,牵一发而动全身,因此目前很多项目仍然停留在TF 1.x(1.1x)上面。像业界大多数支撑搜广推场景的模型,还是用Tensorflow,TensorFlow适合大规模部署,特别是需要跨平台和嵌入式部署时。显而易见,小孩子才做选择,而我们都要学,基本都要会用,这样才能自己选择工具,而不是工具挑选你。然而,我们通过调研发现,80%的0-3岁互联网人没有系统的学习过Tensorflow、PyTorch方向,缺乏项目实战,处于比较浅层面的对比。网上解读Tensorflow、PyTorch文章非常多但知识点零散,学习起来抓不住重点。最近整理一套深度学习框架必备的学习资料,这套资料内容非常详尽全面,课程通过讲解和实战操作,带你从零开始训练网络,做到独立搭建和设计卷积神经网络(包括主流分类和检测网络),并进行神经网络的训练和推理(涉及PyTorch、Tensorflow、Caffe、Mxnet等多个主流框架),通过实战让你掌握各种深度学习开源框架。(资料已经全部整理好)上次已经给大家推荐过一次,但微信有限制每天只能加100个人,很多人反馈没有领到,这次又申请到了100个名额,速度领取,手慢无!由于工作需要,这份教程我本人也在学习中,虽然已经从事这个行业多年,再看这份教程的时候,仍然能查漏补缺,收获满满,我相信不管是AI入门,还是已经具备了一定的工作经验,这份学习资料,都值得你去认真学习研究。该视频出品人是王小天,目前就职于BAT之一,AI算法高级技术专家,法国TOP3高校双硕(计算机科学和数学应用双硕士)毕业。工作期间主要负责人工智能业务线CV与NLP相关算法工作,推进人机混合智能、语义分割、机器翻译、虹膜识别等模块的核心算法研究与优化。对图像分类、物体检测、目标跟踪、自动驾驶、计算机体系结构等有深入的研究。所有以上相关的的内容全部都已经打包好了,汇总成了一份百度云的链接,小贴心之处是怕有的兄弟没有买百度云会员的朋友,能用2MB+/S的速度下载,还特地给大家准备了下载工具。
浏览
26点赞
评论
收藏
分享
手机扫一扫分享
分享
举报
点赞
评论
收藏
分享
手机扫一扫分享
分享
举报