机器学习领域必知必会的12种概率分布(附Python代码实现)

共 3277字,需浏览 7分钟

 ·

2021-07-04 20:52


作者:graykode
编辑:机器之心
机器学习开发者需要了解的 12 种概率分布,这些你都了解吗?
机器学习有其独特的数学基础,我们用微积分来处理变化无限小的函数,并计算它们的变化;我们使用线性代数来处理计算过程;我们还用概率论与统计学建模不确定性。在这其中,概率论有其独特的地位,模型的预测结果、学习过程、学习目标都可以通过概率的角度来理解。

与此同时,从更细的角度来说,随机变量的概率分布也是我们必须理解的内容。在这篇文章中,项目作者介绍了所有你需要了解的统计分布,他还提供了每一种分布的实现代码。

项目地址:https://github.com/graykode/distribution-is-all-you-need


下面让我们先看看总体上概率分布都有什么吧:


非常有意思的是,上图每一种分布都是有联系的。比如说伯努利分布,它重复几次就是二项分布,如果再扩展到多类别,就成为了多项式分布。注意,其中共轭(conjugate)表示的是互为共轭的概率分布;Multi-Class 表示随机变量多于 2 个;N Times 表示我们还会考虑先验分布 P(X)。

在贝叶斯概念理论中,如果后验分布 p(θ | x) 与先验分布 p(θ) 是相同的概率分布族,那么后验分布可以称为共轭分布,先验分布可以称为似然函数的共轭先验。

为了学习概率分布,项目作者建议我们查看 Bishop 的模式识别与机器学习。当然,你要是准备再过一遍《概率论与数理统计》,那也是极好的。

概率分布与特性

1. 均匀分布(连续型)

均匀分布是指闭区间 [a, b] 内的随机变量,且每一个变量出现的概率是相同的。


2. 伯努利分布(离散型)

伯努利分布并不考虑先验概率 P(X),它是单个二值随机变量的分布。它由单个参数φ∈ [0, 1] 控制,φ 给出了随机变量等于 1 的概率。我们使用二元交叉熵函数实现二元分类,它的形式与对伯努利分布取负对数是一致的。

3. 二项分布(离散型)

二项分布是由伯努利提出的概念,指的是重复 n 次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立。

4.Multi-Bernoulli 分布(离散型)

Multi-Bernoulli 分布又称为范畴分布(Categorical distribution),它的类别超过 2,交叉熵的形式与该分布的负对数形式是一致的。

5. 多项式分布(离散型)

范畴分布是多项式分布(Multinomial distribution)的一个特例,它与范畴分布的关系就像伯努利分布与二项分布之间的关系。

6.Beta 分布(连续型)

贝塔分布(Beta Distribution) 是一个作为伯努利分布和二项式分布的共轭先验分布的密度函数,它指一组定义在 (0,1) 区间的连续概率分布。均匀分布是 Beta 分布的一个特例,即在 alpha=1、 beta=1 的分布。

7. 狄利克雷分布(连续型)

狄利克雷分布(Dirichlet distribution)是一类在实数域以正单纯形(standard simplex)为支撑集(support)的高维连续概率分布,是 Beta 分布在高维情形的推广。在贝叶斯推断中,狄利克雷分布作为多项式分布的共轭先验得到应用,在机器学习中被用于构建狄利克雷混合模型。

8.Gamma 分布(连续型)

Gamma 分布是统计学中的常见连续型分布,指数分布、卡方分布和 Erlang 分布都是它的特例。如果 Gamma(a,1) / Gamma(a,1) + Gamma(b,1),那么 Gamma 分布就等价于 Beta(a, b) 分布。

9. 指数分布(连续型)

指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进入机场的时间间隔、打进客服中心电话的时间间隔等等。当 alpha 等于 1 时,指数分布就是 Gamma 分布的特例。

10. 高斯分布(连续型)

高斯分布或正态分布是最为重要的分布之一,它广泛应用于整个机器学习的模型中。例如,我们的权重用高斯分布初始化、我们的隐藏向量用高斯分布进行归一化等等。

当正态分布的均值为 0、方差为 1 的时候,它就是标准正态分布,这也是我们最常用的分布。

11. 卡方分布(连续型)

简单而言,卡方分布(Chi-squared)可以理解为,k 个独立的标准正态分布变量的平方和服从自由度为 k 的卡方分布。卡方分布是一种特殊的伽玛分布,是统计推断中应用最为广泛的概率分布之一,例如假设检验和置信区间的计算。

12. 学生 t-分布

学生 t-分布(Student t-distribution)用于根据小样本来估计呈正态分布且变异数未知的总体,其平均值是多少。t 分布也是对称的倒钟型分布,就如同正态分布一样,但它的长尾占比更多,这意味着 t 分布更容易产生远离均值的样本。

分布的代码实现

上面多种分布的 NumPy 构建方式以及制图方式都提供了对应的代码,读者可在原项目中查阅。如下所示展示了指数分布的构建的制图方式,我们可以直接定义概率密度函数,再打印出来就好了。
import numpy as np
from matplotlib import pyplot as plt

def exponential(x, lamb):
    y = lamb * np.exp(-lamb * x)
    return x, y, np.mean(y), np.std(y)

for lamb in [0.511.5]:

    x = np.arange(0200.01, dtype=np.float)
    x, y, u, s = exponential(x, lamb=lamb)
    plt.plot(x, y, label=r'$mu=%.2f, sigma=%.2f,'
                         r' lambda=%d$' % (u, s, lamb))
plt.legend()
plt.savefig('graph/exponential.png')
plt.show()

往期精彩:

 男人30岁,不该有暮气

【原创首发】机器学习公式推导与代码实现30讲.pdf

【原创首发】深度学习语义分割理论与实战指南.pdf

 谈中小企业算法岗面试

 算法工程师研发技能表

 真正想做算法的,不要害怕内卷

 算法工程师的日常,一定不能脱离产业实践

 技术学习不能眼高手低

 技术人要学会自我营销

 做人不能过拟合

求个在看

浏览 41
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报