R-ggTimeSeries | ggplot2: 热力日历图

数据小魔方

共 733字,需浏览 2分钟

 ·

2020-09-05 22:41


我们平常的日历也可以当作可视化工具,适用于显示不同时间段,以及活动事件的组织情况。时间段通常以不同单位显示,例如日、周、月和年。今天我们最常用的日历形式是公历,每个月份的月历由7个垂直列组成(代表每周7天),如图所示。

日历图的主要可视化形式有如图6-2-2所示的两种:以年为单位的日历图(见图6-2-2 (a))和以月为单位的日历图(见图6-2-2 (b))。日历图的数据结构一般为(Date,Value),将Value按照Date(日期)在日历上展示,其中Value映射到颜色。


1. ggTimeSeries绘图

R中ggTimeSeries 包[1]的ggplot_calendar_heatmap()函数可以绘制如图6-2-2(a)所示的日历图,但是不能设定日历图每个时间单元的边框格式。

使用stat_calendar_heatmap()函数和ggplot2包的ggplot()函数可以调整日历图每个时间单元的边框格式,具体代码如下所示。其关键是使用as.integer(strftime())日期型处理组合函数获取某天对应所在的年份、月份、周数等数据信息。

#setwd("D:/R/working_documents1")library(ggplot2)library(data.table) # 数据格式依赖library(ggTimeSeries)library(RColorBrewer)
# 构造随机数据set.seed(2134)dat <- data.table(  date = seq(as.Date("2016-01-01"), as.Date("2019-12-31"), "days"),  ValueCol = runif(1461))
dat[, ValueCol := ValueCol + (strftime(date, "%u") %in% c(6,7)*runif(1)*0.75) ][, ValueCol := ValueCol + (abs(as.numeric(strftime(date, "%m")) - 6.5))*runif(1)*0.75 ][, ':='(Year = as.integer(strftime(date, "%Y")), # add new column month = as.integer(strftime(date, "%m")), week = as.integer(strftime(date, "%W")))] # 添加列
MonthLabels <- dat[, list(meanWkofYr = mean(week)), by = c("month")                   ][, month := month.abb[month]]


ggplot(data = dat, aes(date = date, fill = ValueCol)) +   stat_calendar_heatmap() +   scale_fill_gradientn(colours = rev(brewer.pal(11, "Spectral"))) +   scale_y_continuous(name = NULL,                     breaks = seq(7, 1, -1),                      labels = c("Mon", "Tue", "Wed",                                 "Thu", "Fri", "Sat", "Sun")) +   scale_x_continuous(name = NULL,                      breaks = MonthLabels$meanWkofYr,                      labels = MonthLabels$month,                      expand = c(0,0)) +   facet_wrap(~Year, ncol = 1, strip.position = "right") +   theme(panel.background = element_blank(),        panel.border = element_blank(),        strip.background = element_blank(),        strip.text = element_text(size = 13, face = "plain", color = "black"),        axis.line = element_line(colour = "black", size = 0.25),        axis.title = element_text(size = 10, face = "plain", color = "black"),        axis.text = element_text(size = 10, face = "plain", color = "black"))

2.geom_tile()


使用R中ggplot2包的geom_tile()函数,借助facet_wrap()函数分面,就可以绘制如图6-2-2(b)所示的以月为单位的日历图,具体代码如下所示。

label_mons <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul",                 "Aug", "Sep", "Oct", "Nov", "Dec")label_wik <- c("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun")
dat19 <- dat[Year == 2017, list(date, ValueCol, month, week) ][, ':='(weekday = as.integer(strftime(date, "%u")), # 周数 yearmonth = strftime(date, "%m%Y"), # 月数 day = strftime(date, "%d")) # 天数 ][, ':='(monthf = factor(x = month, levels = as.character(1:12), labels = label_mons, ordered = TRUE), weekdayf = factor(x = weekday, levels = 1:7, labels = label_wik, ordered = TRUE), yearmonthf = factor(x = yearmonth)) ][, ':='(monthweek = 1 + week - min(week)), by = .(monthf)] # 分组聚合


label_mons <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul",                 "Aug", "Sep", "Oct", "Nov", "Dec")label_wik <- c("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun")
dat19 <- dat[Year == 2017, list(date, ValueCol, month, week) ][, ':='(weekday = as.integer(strftime(date, "%u")), # 周数 day = strftime(date, "%d")) # 天数 ][, ':='(monthf = factor(x = month, levels = as.character(1:12), labels = label_mons, ordered = TRUE), weekdayf = factor(x = weekday, levels = 1:7, labels = label_wik, ordered = TRUE)) ][, ':='(monthweek = 1 + week - min(week)), by = .(monthf)] # 分组聚合
ggplot(dat19, aes(weekdayf, monthweek, fill = ValueCol)) +   geom_tile(color = "white") +   geom_text(aes(label = day), size = 3) +   scale_fill_gradientn(colours = rev(brewer.pal(11, "Spectral"))) +   facet_wrap(~monthf, nrow = 3) +   scale_y_reverse(name = "Week of the month") +   xlab("Day") +  theme(strip.text = element_text(size = 11, face = "plain", color = "black"),        panel.grid = element_blank())


感谢誉辉优化《R语言数据可视化之美》关于热力日历图的代码


参考:

[1] ggTimeSeries 包的参考网址:http://www.ggplot2-exts.org/ggTimeSeries.html



如需联系EasyShu团队

请加微信:EasyCharts


微信公众号【EasyShu】博文代码集合地址

https://github.com/Easy-Shu/EasyShu-WeChat


《R语言数据可视化之美》增强版


增强版配套源代码下载地址

Github

https://github.com/Easy-Shu/Beautiful-Visualization-with-R

百度云下载

https://pan.baidu.com/s/1ZBKQCXW9TDnpM_GKRolZ0w 

提取码:jpou


浏览 159
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报