如何选择分析场景?2种指标梳理方式
当一个决策分析类项目(如商务智能、数据仓库、大数据分析等)开始筹划的时候,往往面临着如何选择分析场景的问题。我们需要的就是“指标”!
指标的工作主要采用“自上而下”和“自下而上”相结合的梳理方式。其中指标分类应从业务管理需求出发,自上而下逐层展开;而具体指标以业务系统为导向,则自下而上逐层筛选。
图1 数据指标梳理方法
下面是一个梳理过程的示例——
“自上而下”:从业务域我们一般可以分为财务、人力资源、销售等等,然后在进行二级业务域划分,如销售可以分为市场营销、客户管理、订单管理等等(是否需要三级分类视业务复杂程度决定),这样我们就得到了一个指标分类的初步框架。
“自下而上”:我们从业务系统出发,从系统中识别其功能模块,例如ERP、CRM、SRM等,CRM系统中又有客户管理、订单管理等功能模块,我们从这些模块中包含的业务单据中就可以找到相应的数值字段,然后挑选出可以作为指标展示的。如果这些系统中有单独的统计报表功能,那么我们的工作相对简单,只需要从报表中找到相应的指标即可。
图2 找指标方法
找到了指标,其实只有指标名称而已,我们还需要找到指标的各项属性定义。指标的属性分为“业务属性”和“技术属性”两类,业务属性包含业务人员通常认识的指标分类、名称、计算公式、展现方式和查询权限等;技术属性包含技术运维人员所关心的系统来源、取数字段、取数频率、加工规则等。
图3 指标的定义
将找到的指标及其属性,形成一张总表,即指标字典。具体字段的选取工作最好能让业务人员和技术人员共同参与制定。
图4 指标字段表
通过找指标,我们获得了企业中的指标列表,但是这些指标并不能称之为体系,因为没有进行分类,指标没有业务含义,指标和指标之间也没有任何逻辑。我们需要结合企业战略和岗位职责,设定全面的衡量指标,并分解到具体业务过程。
图5 指标常见分类
企业仅仅制定指标体系,并不能起到规范数据的作用,只有将指标体系落实在信息系统中,才能发挥其管理作用,因此构建指标体系往往和应用系统建设同步进行。指标体系包含但不限于以下使用场景:
图6 指标成果主要应用场景
通过指标数据体系的应用,我们将规范企业内指标使用的规范性,提高数据的准确性、一致性和可追溯性。
End.
转自:中国统计网
扫码关注本号,输入以下关键词
查看更多优质内容!
世界杯 | python可视化 | bs4 |
数据分析报告 | 人工智能算法