利用Python做一个漂亮小姐姐词云跳舞视频
导入模块
下载所需模块
我们需要下载很多的模块,所以我们可以使用os.system()方法来自动安装所需模块,当然也有可能下载失败,特别是opencv-python,多安装几次就好啦.
import os
import time
libs = {"lxml","requests","pandas","numpy","you-get","opencv-python","pandas","fake_useragent","matplotlib","moviepy"}
try:
for lib in libs:
os.system(f"pip3 install -i https://pypi.doubanio.com/simple/ {lib}")
print(lib+"下载成功")
except:
print("下载失败")
导入模块
在这里统一先导入所需的模块
import os
import re
import cv2
import jieba
import requests
import moviepy
import pandas as pd
import numpy as np
from PIL import Image
from lxml import etree
from wordcloud import WordCloud
import matplotlib.pyplot as plt
from fake_useragent import UserAgent
视频处理
下载视频
pip install you-get
you-get -i https://www.bilibili.com/video/BV11C4y1h7nX
视频分割
代码展示
# -*- coding:utf-8 -*-
import cv2
cap = cv2.VideoCapture(r"无价之姐~让我乘风破浪~~~.flv")
num = 1
while 1:
# 逐帧读取视频 按顺序保存到本地文件夹
ret,frame = cap.read()
if ret:
cv2.imwrite(f".\pictures\img_{num}.jpg",frame)
else:
break
cap.release() # 释放资源
结果展示
人像分割
创建应用
Python SDK参考文档
https://cloud.baidu.com/doc/BODY/s/Rk3cpyo93?_=5011917520845
代码展示
# -*- coding:utf-8 -*-
import cv2
import base64
import numpy as np
import os
from aip import AipBodyAnalysis
import time
import random
APP_ID = '******'
API_KEY = '*******************'
SECRET_KEY = '********************'
client = AipBodyAnalysis(APP_ID, API_KEY, SECRET_KEY)
# 保存图像分割后的路径
path = './mask_img/'
# os.listdir 列出保存到图片名称
img_files = os.listdir('./pictures')
print(img_files)
for num in range(1, len(img_files) + 1):
# 按顺序构造出图片路径
img = f'./pictures/img_{num}.jpg'
img1 = cv2.imread(img)
height, width, _ = img1.shape
# print(height, width)
# 二进制方式读取图片
with open(img, 'rb') as fp:
img_info = fp.read()
# 设置只返回前景 也就是分割出来的人像
seg_res = client.bodySeg(img_info)
labelmap = base64.b64decode(seg_res['labelmap'])
nparr = np.frombuffer(labelmap, np.uint8)
labelimg = cv2.imdecode(nparr, 1)
labelimg = cv2.resize(labelimg, (width, height), interpolation=cv2.INTER_NEAREST)
new_img = np.where(labelimg == 1, 255, labelimg)
mask_name = path + 'mask_{}.png'.format(num)
# 保存分割出来的人像
cv2.imwrite(mask_name, new_img)
print(f'======== 第{num}张图像分割完成 ========')
结果展示
弹幕爬取
https://www.bilibili.com/video/BV1jZ4y1K78N
网页分析
观察历史弹幕
清楚元素,展开弹幕列表
日期列表,只有2021年的,点击其他日期,出来了history请求。
爬取弹幕
构造时间序列
import pandas as pd
a = pd.date_range("2020-08-08","2020-09-08")
print(a)
DatetimeIndex(['2020-08-08', '2020-08-09', '2020-08-10', '2020-08-11',
'2020-08-12', '2020-08-13', '2020-08-14', '2020-08-15',
'2020-08-50', '2020-08-17', '2020-08-18', '2020-08-19',
'2020-08-20', '2020-08-21', '2020-08-22', '2020-08-23',
'2020-08-24', '2020-08-25', '2020-08-26', '2020-08-27',
'2020-08-28', '2020-08-29', '2020-08-30', '2020-08-31',
'2020-09-01', '2020-09-02', '2020-09-03', '2020-09-04',
'2020-09-05', '2020-09-06', '2020-09-07', '2020-09-08'],
dtype='datetime64[ns]', freq='D')
爬取数据
import requests
import pandas as pd
import re
import csv
from fake_useragent import UserAgent
from concurrent.futures import ThreadPoolExecutor
import datetime
ua = UserAgent()
start_time = datetime.datetime.now()
def Grab_barrage(date):
headers = {
"origin": "https://www.bilibili.com",
"referer": "https://www.bilibili.com/video/BV1jZ4y1K78N?from=search&seid=1084505810439035065",
"cookie": "",
"user-agent": ua.random(),
}
params = {
'type': 1,
'oid' : "222413092",
'date': date
}
r= requests.get(url, params=params, headers=headers)
r.encoding = 'utf-8'
comment = re.findall('(.*?) ', r.text)
for i in comments:
df.append(i)
a = pd.DataFrame(df)
a.to_excel("danmu.xlsx")
def main():
with ThreadPoolExecutor(max_workers=4) as executor:
executor.map(Grab_barrage, date_list)
"""计算所需时间"""
delta = (datetime.datetime.now() - start_time).total_seconds()
print(f'用时:{delta}s')
if __name__ == '__main__':
# 目标url
url = "https://api.bilibili.com/x/v2/dm/history"
start,end = '20200808','20200908'
date_list = [x for x in pd.date_range(start, end).strftime('%Y-%m-%d')]
count = 0
main()
结果展示
生成词云图
评论内容机械压缩去重
def func(s):
for i in range(1,int(len(s)/2)+1):
for j in range(len(s)):
if s[j:j+i] == s[j+i:j+2*i]:
k = j + i
while s[k:k+i] == s[k+i:k+2*i] and kk = k + i
s = s[:j] + s[k:]
return s
data["短评"] = data["短评"].apply(func)
添加停用词和自定义词组
import pandas as pd
from wordcloud import WordCloud
import jieba
from tkinter import _flatten
import matplotlib.pyplot as plt
jieba.load_userdict("./词云图//add.txt")
with open('./词云图//stoplist.txt', 'r', encoding='utf-8') as f:
stopWords = f.read()
生成词云图
from wordcloud import WordCloud
import collections
import jieba
import re
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
with open('barrages.txt') as f:
data = f.read()
jieba.load_userdict("./词云图//add.txt")
# 读取数据
with open('barrages.txt') as f:
data = f.read()
jieba.load_userdict("./词云图//add.txt")
# 文本预处理 去除一些无用的字符 只提取出中文出来
new_data = re.findall('[\u4e00-\u9fa5]+', data, re.S)
new_data = "/".join(new_data)
# 文本分词
seg_list_exact = jieba.cut(new_data, cut_all=True)
result_list = []
with open('./词云图/stoplist.txt', encoding='utf-8') as f:
con = f.read().split('\n')
stop_words = set()
for i in con:
stop_words.add(i)
for word in seg_list_exact:
# 设置停用词并去除单个词
if word not in stop_words and len(word) > 1:
result_list.append(word)
# 筛选后统计词频
word_counts = collections.Counter(result_list)
path = './wordcloud/'
img_files = os.listdir('./mask_img')
print(img_files)
for num in range(1, len(img_files) + 1):
img = fr'.\mask_img\mask_{num}.png'
# 获取蒙版图片
mask_ = 255 - np.array(Image.open(img))
# 绘制词云
plt.figure(figsize=(8, 5), dpi=200)
my_cloud = WordCloud(
background_color='black', # 设置背景颜色 默认是black
mask=mask_, # 自定义蒙版
mode='RGBA',
max_words=500,
font_path='simhei.ttf', # 设置字体 显示中文
).generate_from_frequencies(word_counts)
# 显示生成的词云图片
plt.imshow(my_cloud)
# 显示设置词云图中无坐标轴
plt.axis('off')
word_cloud_name = path + 'wordcloud_{}.png'.format(num)
my_cloud.to_file(word_cloud_name) # 保存词云图片
print(f'======== 第{num}张词云图生成 ========')
合成视频
图片合成
import cv2
import os
# 输出视频的保存路径
video_dir = 'result.mp4'
# 帧率
fps = 30
# 图片尺寸
img_size = (1920, 1080)
fourcc = cv2.VideoWriter_fourcc('M', 'P', '4', 'V') # opencv3.0 mp4会有警告但可以播放
videoWriter = cv2.VideoWriter(video_dir, fourcc, fps, img_size)
img_files = os.listdir('.//wordcloud')
for i in range(88, 888):
img_path = './/wordcloud//wordcloud_{}.png'.format(i)
frame = cv2.imread(img_path)
frame = cv2.resize(frame, img_size) # 生成视频 图片尺寸和设定尺寸相同
videoWriter.write(frame) # 写进视频里
print(f'======== 按照视频顺序第{i}张图片合进视频 ========')
videoWriter.release() # 释放资源
音频添加
import moviepy.editor as mpy
# 读取词云视频
my_clip = mpy.VideoFileClip('result.mp4')
# 截取背景音乐
audio_background = mpy.AudioFileClip('song.mp3').subclip(0,25)
audio_background.write_audiofile('song1.mp3')
# 视频中插入音频
final_clip = my_clip.set_audio(audio_background)
# 保存为最终的视频 动听的音乐!漂亮小姐姐词云跳舞视频!
final_clip.write_videofile('final_video.mp4')
结果展示
推荐阅读:
入门: 最全的零基础学Python的问题 | 零基础学了8个月的Python | 实战项目 |学Python就是这条捷径
干货:爬取豆瓣短评,电影《后来的我们》 | 38年NBA最佳球员分析 | 从万众期待到口碑扑街!唐探3令人失望 | 笑看新倚天屠龙记 | 灯谜答题王 |用Python做个海量小姐姐素描图 |碟中谍这么火,我用机器学习做个迷你推荐系统电影
趣味:弹球游戏 | 九宫格 | 漂亮的花 | 两百行Python《天天酷跑》游戏!
AI: 会做诗的机器人 | 给图片上色 | 预测收入 | 碟中谍这么火,我用机器学习做个迷你推荐系统电影
小工具: Pdf转Word,轻松搞定表格和水印! | 一键把html网页保存为pdf!| 再见PDF提取收费! | 用90行代码打造最强PDF转换器,word、PPT、excel、markdown、html一键转换 | 制作一款钉钉低价机票提示器! |60行代码做了一个语音壁纸切换器天天看小姐姐!|
年度爆款文案
点阅读原文,看200个Python案例!
评论