100 个统计学和 R 语言学习资源网站

共 12840字,需浏览 26分钟

 ·

2022-06-21 11:04

简介

原文:统计学 & R学习资源

编辑:庄闪闪的R语言手册,pythonic生物人

作者:CoffeeCat[1]

转载于:Coffee学生物统计的地方[2]

注:有些链接需要科学上网/较硬的英文阅读能力才能愉快地体验知识/技术带来的快感。如果公众号阅读体验不佳,可以在文末原文链接跳转。

1.个人主页、博客、社区、论坛

北大李东风[3] 

中科大张伟平[4]

谢益辉(人称谢大大)[5]统计之都论坛[6]创始人(与之有关的统计之都[7])

统计学资源链接大全[8]:知名 统计系统计学会统计组织统计软件统计期刊的官网(该老师的主页[9]

斯坦福大学统计系:Trevor Hastie[10]Jerome H. Friedman[11]Rob Tibshirani[12]

顾凯[13]:统计分析师;R、SAS、医学统计博主

revolutionanalytics[14]:一个R社区(Revolution Analytics开发了Revolution R,后来被微软收购)

r-bloggers[15]:R博客

Statistics How To[16]:统计学与SPSS, Minitab, Excel

Statistical Modeling, Causal Inference, and Social Science[17]:哥大统计“统计建模,因果推论和社会科学”

Error Statistics Philosophy[18]:统计哲学家Deborah G. Mayo

Simply Statistics[19]:三位生物统计专家的Jeff Leek[20], Roger Peng[21], Rafa Irizarry[22]的博客

FLOWINGDATA[23]:分析、数据可视化(付费)

Statistics by Jim[24]:使统计更直观

2.电子书、课程

Library Genesis[25]:外文电子书大全。结合亚马逊[26]Routledge[27](Chapman \& Hall/CRC Texts in Statistical Science[28]Chapman \& Hall/CRC Biostatistics Series[29])、Springer[30](Springer Statistics[31])、Elsevier[32]Oxford University Press[33](Probability \& Statistics[34])、Cambridge University Press[35](Statistics and probability[36])……几乎可以找到你想要的一切。

电子书From Bookdown[37]:

链接网页上方许多按钮是可以按的,请自行探索

数据科学中的R语言[38]:非常全面的R教程

R语言忍者秘籍[39]:谢大大的R教程

现代统计图形[40]:谢大大R可视化的佳作

Statistics Handbook[41]:R语言统计分析小册子(有类似的中文的:薛毅老师的《统计建模与R软件》)

R for Data Science[42]:COPSS奖得主、RStudio首席科学家Hadley Wickham[43]的倾力之作,学习tidyverse[44]重要语法的不二之选

Advanced R[45]Hadley Wickham[46]的提高R语言编程技能(本书的习题解答[47])

R Graphics Cookbook[48]:R基础绘图圣经

Data Visualization with R[49]:R语言实战的作者的另一个作品

R Gallery Book[50]The R Graph Gallery[51]的完整指南

Beyond Multiple Linear Regression[52]:回归分析的拓展:广义线性模型和分层模型

Applied longitudinal data analysis in brms and the tidyverse[53]:纵向数据分析

Interpretable Machine Learning[54]:可解释机器学习

现代应用统计与R语言[55]:顾名思义

R语言教程[56]:同上

统计计算[57]:同上

零基础学R语言[58]:同上

Rmd权威指南[59]:by谢大大

Rmd中文指南[60]:这本似乎还未完待续

blogdown[61]:谢大大用R写博客

bookdown[62]:谢大大用R写书

电子书、在线课程、教程

生物统计手册:Handbook of Biological Statistics[63] 以及它的R陪同:An R Companion for the Handbook of Biological Statistics[64]

部分免费的数据科学课程:DataCamp[65]Dataquest[66]Datanovia[67]

Biomedical Data Science[68]:生物医学数据科学

Introduction to Econometrics with R[69]:R语言计量经济学导论(量:第四声)

Forecasting: Principles and Practice (3rd ed)[70]:旨在全面介绍预测方法

以下两本是统计学习圣经:

An Introduction to Statistical Learning\(1 ed.\)[71]:ISLR第一版(2021年夏季出第二版:官网[72])

The Elements of Statistical Learning[73]:ESL官网

3.R Packages

Awesome R[74]:优秀的R包和资料

tidyverse[75]tidymodels[76]:分别代表数据分析、统计模型的一套流程

ggplot2[77] & its 82 extensions[78]:可视化领域的少林

shiny[79]:交互、可视化、分析平台(它的画廊[80])

plotly[81]:可视化另一佳作

htmlwidgets for R[82]:126个HTML图形插件

R任务视图[83]:包含了四十多个热门主题,每个主题下面都有几十个包供你选择

xaringan[84]:谢大大用R写ppt英文模板[85]中文模板[86]

R数据集:R自带的datesets[87] package、更全的Rdatasets[88](不是package,只是含有dataset的package的信息)

4.Others

R官方文档[89]R贡献文档[90]

timeline-of-statistics.pdf[91]:简明统计学史(by ASA)

RStudio的cheatsheet[92]:快速回顾一些R包的基本语法(支持邮件订阅;鼓励大家参与到该网址中的中文翻译项目;当然除了由RStudio发布的cheatsheet,还有其他机构也会发布,比如DataCamp的cheatsheet[93],其中还有Python的)

帮助自学:

UCB统计系推荐阅读清单[94]

ASA的统计学本科课程大纲[95]

阅读材料:

Statistical Science Conversations[96]:IMS的与一百多位统计学家的访谈专栏

How R Helps Airbnb Make the Most of its Data[97]

Why Is It Called That Way\?\! – Origin and Meaning of R Package Names[98]:一些R包名称的由来

Tidy Data[99]:by Hadley Wickham

未完待续.

参考资料

[1]

CoffeeCat: https://www.zhihu.com/people/CoffeeCat2000

[2]

Coffee学生物统计的地方: https://www.zhihu.com/column/c_1242033096192262144

[3]

北大李东风: https://link.zhihu.com/?target=https%3A//www.math.pku.edu.cn/teachers/lidf/

[4]

中科大张伟平: https://link.zhihu.com/?target=http%3A//staff.ustc.edu.cn/~zwp/teach.htm

[5]

谢益辉: https://link.zhihu.com/?target=https%3A//yihui.org/

[6]

统计之都论坛: https://link.zhihu.com/?target=https%3A//d.cosx.org/

[7]

统计之都: https://link.zhihu.com/?target=https%3A//cosx.org/

[8]

统计学资源链接大全: https://link.zhihu.com/?target=http%3A//staff.ustc.edu.cn/~ynyang/stat-resources.html

[9]

该老师的主页: https://link.zhihu.com/?target=http%3A//staff.ustc.edu.cn/~ynyang

[10]

Trevor Hastie: https://link.zhihu.com/?target=http%3A//www-stat.stanford.edu/~hastie/

[11]

Jerome H. Friedman: https://link.zhihu.com/?target=http%3A//statweb.stanford.edu/~jhf/

[12]

Rob Tibshirani: https://link.zhihu.com/?target=http%3A//statweb.stanford.edu/~tibs/

[13]

顾凯: https://link.zhihu.com/?target=https%3A//www.bioinfo-scrounger.com/

[14]

revolutionanalytics: https://link.zhihu.com/?target=https%3A//blog.revolutionanalytics.com/

[15]

r-bloggers: https://link.zhihu.com/?target=https%3A//www.r-bloggers.com/

[16]

Statistics How To: https://link.zhihu.com/?target=https%3A//www.statisticshowto.com/

[17]

Statistical Modeling, Causal Inference, and Social Science: https://link.zhihu.com/?target=https%3A//statmodeling.stat.columbia.edu/

[18]

Error Statistics Philosophy: https://link.zhihu.com/?target=https%3A//errorstatistics.com/

[19]

Simply Statistics: https://link.zhihu.com/?target=https%3A//simplystatistics.org/

[20]

Jeff Leek: https://link.zhihu.com/?target=http%3A//www.biostat.jhsph.edu/~jleek/research.html

[21]

Roger Peng: https://link.zhihu.com/?target=http%3A//www.biostat.jhsph.edu/~rpeng/

[22]

Rafa Irizarry: https://link.zhihu.com/?target=http%3A//rafalab.dfci.harvard.edu/

[23]

FLOWINGDATA: https://link.zhihu.com/?target=https%3A//flowingdata.com/

[24]

Statistics by Jim: https://link.zhihu.com/?target=https%3A//statisticsbyjim.com/

[25]

Library Genesis: https://link.zhihu.com/?target=http%3A//libgen.rs/

[26]

亚马逊: https://link.zhihu.com/?target=http%3A//amazon.com/

[27]

Routledge: https://link.zhihu.com/?target=https%3A//www.routledge.com/

[28]

Chapman & Hall/CRC Texts in Statistical Science: https://link.zhihu.com/?target=https%3A//www.routledge.com/Chapman--HallCRC-Texts-in-Statistical-Science/book-series/CHTEXSTASCI

[29]

Chapman & Hall/CRC Biostatistics Series: https://link.zhihu.com/?target=https%3A//www.routledge.com/Chapman--HallCRC-Biostatistics-Series/book-series/CHBIOSTATIS

[30]

Springer: https://link.zhihu.com/?target=https%3A//www.springer.com/

[31]

Springer Statistics: https://link.zhihu.com/?target=https%3A//www.springer.com/gp/statistics

[32]

Elsevier: https://link.zhihu.com/?target=https%3A//www.elsevier.com/

[33]

Oxford University Press: https://link.zhihu.com/?target=https%3A//global.oup.com/academic/%3Fcc%3Dus%26lang%3Den%26

[34]

Probability & Statistics: https://link.zhihu.com/?target=https%3A//global.oup.com/academic/category/science-and-mathematics/mathematics/probability-and-statistics/%3Fcc%3Dus%26lang%3Den%26

[35]

Cambridge University Press: https://link.zhihu.com/?target=https%3A//www.cambridge.org/cn/academic

[36]

Statistics and probability: https://link.zhihu.com/?target=https%3A//www.cambridge.org/cn/academic/subjects/statistics-probability/

[37]

Bookdown: https://link.zhihu.com/?target=https%3A//bookdown.org/home/archive/

[38]

数据科学中的R语言: https://link.zhihu.com/?target=https%3A//bookdown.org/wangminjie/R4DS/

[39]

R语言忍者秘籍: https://link.zhihu.com/?target=https%3A//bookdown.org/yihui/r-ninja/

[40]

现代统计图形: https://link.zhihu.com/?target=https%3A//bookdown.org/xiangyun/msg/

[41]

Statistics Handbook: https://link.zhihu.com/?target=https%3A//bookdown.org/mpfoley1973/statistics/

[42]

R for Data Science: https://link.zhihu.com/?target=https%3A//bookdown.org/roy_schumacher/r4ds/

[43]

Hadley Wickham: https://link.zhihu.com/?target=http%3A//hadley.nz/

[44]

tidyverse: https://link.zhihu.com/?target=https%3A//www.tidyverse.org/packages/

[45]

Advanced R: https://link.zhihu.com/?target=https%3A//adv-r.hadley.nz/

[46]

Hadley Wickham: https://link.zhihu.com/?target=http%3A//hadley.nz/

[47]

习题解答: https://link.zhihu.com/?target=https%3A//advanced-r-solutions.rbind.io/

[48]

R Graphics Cookbook: https://link.zhihu.com/?target=https%3A//r-graphics.org/

[49]

Data Visualization with R: https://link.zhihu.com/?target=https%3A//rkabacoff.github.io/datavis/

[50]

R Gallery Book: https://link.zhihu.com/?target=https%3A//bookdown.org/content/b298e479-b1ab-49fa-b83d-a57c2b034d49/

[51]

The R Graph Gallery: https://link.zhihu.com/?target=https%3A//www.r-graph-gallery.com/

[52]

Beyond Multiple Linear Regression: https://link.zhihu.com/?target=https%3A//bookdown.org/roback/bookdown-BeyondMLR/

[53]

Applied longitudinal data analysis in brms and the tidyverse: https://link.zhihu.com/?target=https%3A//bookdown.org/content/ef0b28f7-8bdf-4ba7-ae2c-bc2b1f012283/

[54]

Interpretable Machine Learning: https://link.zhihu.com/?target=https%3A//christophm.github.io/interpretable-ml-book/

[55]

现代应用统计与R语言: https://link.zhihu.com/?target=https%3A//bookdown.org/xiangyun/masr/

[56]

R语言教程: https://link.zhihu.com/?target=https%3A//www.math.pku.edu.cn/teachers/lidf/docs/Rbook/html/_Rbook/index.html

[57]

统计计算: https://link.zhihu.com/?target=https%3A//www.math.pku.edu.cn/teachers/lidf/docs/statcomp/html/_statcompbook/index.html

[58]

零基础学R语言: https://link.zhihu.com/?target=https%3A//bookdown.org/qiyuandong/intro_r/

[59]

Rmd权威指南: https://link.zhihu.com/?target=https%3A//bookdown.org/yihui/rmarkdown/

[60]

Rmd中文指南: https://link.zhihu.com/?target=https%3A//bookdown.org/qiushi/rmarkdown-guide/

[61]

blogdown: https://link.zhihu.com/?target=https%3A//bookdown.org/yihui/blogdown/

[62]

bookdown: https://link.zhihu.com/?target=https%3A//bookdown.org/home/about/

[63]

Handbook of Biological Statistics: https://link.zhihu.com/?target=http%3A//www.biostathandbook.com/

[64]

An R Companion for the Handbook of Biological Statistics: https://link.zhihu.com/?target=https%3A//rcompanion.org/rcompanion/index.html

[65]

DataCamp: https://zhuanlan.zhihu.com/p/366590161/www.datacamp.com

[66]

Dataquest: https://link.zhihu.com/?target=https%3A//www.dataquest.io/

[67]

Datanovia: https://link.zhihu.com/?target=https%3A//www.datanovia.com/en/

[68]

Biomedical Data Science: https://link.zhihu.com/?target=http%3A//genomicsclass.github.io/book/

[69]

Introduction to Econometrics with R: https://link.zhihu.com/?target=https%3A//www.econometrics-with-r.org/

[70]

Forecasting: Principles and Practice (3rd ed): https://link.zhihu.com/?target=https%3A//otexts.com/fpp3/index.html

[71]

An Introduction to Statistical Learning(1 ed.): https://link.zhihu.com/?target=https%3A//www.statlearning.com/s/ISLRSeventhPrinting.pdf

[72]

官网: https://link.zhihu.com/?target=https%3A//www.statlearning.com/

[73]

The Elements of Statistical Learning: https://link.zhihu.com/?target=https%3A//web.stanford.edu/~hastie/ElemStatLearn/

[74]

Awesome R: https://link.zhihu.com/?target=https%3A//github.com/qinwf/awesome-R/blob/master/README.md

[75]

tidyverse: https://link.zhihu.com/?target=https%3A//www.tidyverse.org/packages/

[76]

tidymodels: https://link.zhihu.com/?target=https%3A//www.tidymodels.org/packages/

[77]

ggplot2: https://link.zhihu.com/?target=https%3A//ggplot2.tidyverse.org/

[78]

its 82 extensions: https://link.zhihu.com/?target=https%3A//exts.ggplot2.tidyverse.org/gallery/

[79]

shiny: https://link.zhihu.com/?target=https%3A//shiny.rstudio.com/

[80]

它的画廊: https://link.zhihu.com/?target=https%3A//shiny.rstudio.com/gallery/

[81]

plotly: https://link.zhihu.com/?target=https%3A//plotly.com/r/

[82]

htmlwidgets for R: https://link.zhihu.com/?target=https%3A//gallery.htmlwidgets.org/

[83]

R任务视图: https://link.zhihu.com/?target=https%3A//cran.r-project.org/web/views/

[84]

xaringan: https://link.zhihu.com/?target=https%3A//github.com/yihui/xaringan

[85]

英文模板: https://link.zhihu.com/?target=https%3A//slides.yihui.org/xaringan/

[86]

中文模板: https://link.zhihu.com/?target=https%3A//slides.yihui.org/xaringan/zh-CN.html

[87]

datesets: https://link.zhihu.com/?target=https%3A//stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html

[88]

Rdatasets: https://link.zhihu.com/?target=https%3A//vincentarelbundock.github.io/Rdatasets/articles/data.html

[89]

R官方文档: https://link.zhihu.com/?target=https%3A//www.r-project.org/other-docs.html

[90]

R贡献文档: https://link.zhihu.com/?target=https%3A//cran.r-project.org/other-docs.html

[91]

timeline-of-statistics.pdf: https://link.zhihu.com/?target=http%3A//www.statslife.org.uk/images/pdf/timeline-of-statistics.pdf

[92]

RStudio的cheatsheet: https://link.zhihu.com/?target=https%3A//www.rstudio.com/resources/cheatsheets/

[93]

DataCamp的cheatsheet: https://link.zhihu.com/?target=https%3A//www.datacamp.com/community/data-science-cheatsheets

[94]

UCB统计系推荐阅读清单: https://link.zhihu.com/?target=http%3A//sgsa.berkeley.edu/current_students/books/

[95]

ASA的统计学本科课程大纲: https://link.zhihu.com/?target=http%3A//www.amstat.org/education/pdfs/guidelines2014-11-15.pdf

[96]

Statistical Science Conversations: https://link.zhihu.com/?target=https%3A//imstat.org/journals-and-publications/statistical-science/conversations/

[97]

How R Helps Airbnb Make the Most of its Data: https://link.zhihu.com/?target=https%3A//www.tandfonline.com/doi/full/10.1080/00031305.2017.1392362

[98]

Why Is It Called That Way?! – Origin and Meaning of R Package Names: https://link.zhihu.com/?target=https%3A//www.statworx.com/en/blog/why-is-it-called-that-way-origin-and-meaning-of-r-package-names/

[99]

Tidy Data: https://link.zhihu.com/?target=https%3A//vita.had.co.nz/papers/tidy-data.pdf

推荐阅读

我逃到国企了

再也不接私活了

Kaggle出了一本竞赛书(500页)

机器学习基础:用 Lasso 做特征选

机器学习自动补全代(hán)码(shù)神器

整理不易,三连

浏览 47
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报