4个将Pandas换为交互式表格Python包

共 2196字,需浏览 5分钟

 ·

2023-08-29 15:18

   
来源:DeepHub IMBA

本文约800字,建议阅读5分钟

本文为你介绍4个Python包,可以将Pandas的DataFrame转换交互式表格。


Pandas是我们日常处理表格数据最常用的包,但是对于数据分析来说,Pandas的DataFrame还不够直观,所以今天我们将介绍4个Python包,可以将Pandas的DataFrame转换交互式表格,让我们可以直接在上面进行数据分析的操作。

Pivottablejs

Pivottablejs是一个通过IPython widgets集成到Python中的JavaScript库,允许用户直接从DataFrame数据创建交互式和灵活的汇总报表。可以进行高效、清晰的数据分析和表示,帮助将数据从Pandas DataFrame转换为易于观察的交互式数据透视表。

pivot_ui函数可以自动从DataFrame生成交互式用户界面,使用户可以简单地修改,检查聚合项,并快速轻松地更改数据结构。

 !pip install pivottablejs     from pivottablejs import pivot_ui   import pandas as pd    data = pd.read_csv("D:\Data\company_unicorn.csv")   data["Year"] = pd.to_datetime(data["Date Joined"]).dt.year   pivot_ui(data)

如下图所示,我们可以直接在notebook中对DataFrame进行筛选,生成图表:

我们还可以快速生成数据透视表:

Pygwalker

PyGWalker可以把DataFrame变成一个表格风格的用户界面,让我们直观有效地探索数据。


这个包的用户界面对Tableau用户来说很熟悉,如果你用过Tableau那么上手起来就很容易。

 !pip install pygwalker     import pygwalker as pyw  walker = pyw.walk(data)

通过一些简单的拖拽,可以进行筛选和可视化,这是非常方便的。

Qgrid


除了PyGWalker之外,Qgrid也是一个很好的工具,它可以很容易地将DataFrame架转换为视觉上直观的交互式数据表。

 import qgrid   qgridframe = qgrid.show_grid(data, show_toolbar=True)  qgridframe

我们还可以直接在表上添加、删除数据。

Itables

与上面提到的qgrid包一样,Itables提供了一个简单的接口。可以进行简单的操作,如过滤、搜索、排序等。

 from itables import init_notebook_mode, show  init_notebook_mode(all_interactive=False)    show(data)

tables和Qgrid包对于快速查看数据模式是必要的。然而,如果我们想要进一步理解数据并进行数据转换,它们的特征是不够的。因此,在获得更复杂的见解的情况下,使用透视表js和Pygwalker是可取的。

总结

上面的这些包可以在Jupyter Notebook中将dataframe转换为交互式表。

Itables 和Qgrid比较轻量,可以让我们快速的查看数据,但是如果你想进行更多的操作,例如生成一些简单的可视化图表,那么Pivottablejs和Pygwalker是一个很好的工具。

作者:Chi Nguyen


编辑:黄继彦
校对:林亦霖

浏览 660
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报