Hudi 原理 | 一文彻底掌握 Apache Hudi 异步 Clustering 部署

HBase技术社区

共 8453字,需浏览 17分钟

 ·

2021-09-17 12:27

1. 摘要

在之前的一篇博客中,我们介绍了Clustering(聚簇)的表服务来重新组织数据来提供更好的查询性能,而不用降低摄取速度,并且我们已经知道如何部署同步Clustering,本篇博客中,我们将讨论近期社区做的一些改进以及如何通过HoodieClusteringJobDeltaStreamer工具来部署异步Clustering

2. 介绍

通常讲,Clustering根据可配置的策略创建一个计划,根据特定规则对符合条件的文件进行分组,然后执行该计划。Hudi支持并发写入[1],并在多个表服务之间提供快照隔离,从而允许写入程序在后台运行Clustering时继续摄取。有关Clustering的体系结构的更详细概述请查看上一篇博文。

3. Clustering策略

如前所述Clustering计划和执行取决于可插拔的配置策略。这些策略大致可分为三类:计划策略执行策略更新策略

3.1 计划策略

该策略在创建Clustering计划时发挥作用。它有助于决定应该对哪些文件组进行Clustering。让我们看一下Hudi提供的不同计划策略。请注意,使用此配置[2]可以轻松地插拔这些策略。

SparkSizeBasedClusteringPlanStrategy:根据基本文件的小文件限制[3]选择文件切片并创建Clustering组,最大大小为每个组允许的最大文件大小。可以使用此配置[4]指定最大大小。此策略对于将中等大小的文件合并成大文件非常有用,以减少跨冷分区分布的大量文件。SparkRecentDaysClusteringPlanStrategy:根据以前的N天分区创建一个计划,将这些分区中的小文件片进行Clustering,这是默认策略,当工作负载是可预测的并且数据是按时间划分时,它可能很有用。SparkSelectedPartitionsClusteringPlanStrategy:如果只想对某个范围内的特定分区进行Clustering,那么无论这些分区是新分区还是旧分区,此策略都很有用,要使用此策略,还需要在下面设置两个配置(包括开始和结束分区):

  hoodie.clustering.plan.strategy.cluster.begin.partition  hoodie.clustering.plan.strategy.cluster.end.partition

注意:所有策略都是分区感知的,后两种策略仍然受到第一种策略的大小限制的约束。

3.2 执行策略

在计划阶段构建Clustering组后,Hudi主要根据排序列和大小为每个组应用执行策略,可以使用此配置[5]指定策略。

SparkSortAndSizeExecutionStrategy是默认策略。使用此配置进行Clustering时,用户可以指定数据排序列。除此之外我们还可以为Clustering产生的Parquet文件设置最大文件大小[6]。该策略使用bulk_insert将数据写入新文件,在这种情况下,Hudi隐式使用一个分区器,该分区器根据指定列进行排序。通过这种策略改变数据布局,不仅提高了查询性能,而且自动平衡了重写开销。

现在该策略可以作为单个Spark作业或多个作业执行,具体取决于在计划阶段创建的Clustering组的数量。默认情况下Hudi将提交多个Spark作业并合并结果。如果要强制Hudi使用单Spark作业,请将执行策略类配置设置为SingleSparkJobExecutionStrategy

3.3 更新策略

目前只能为未接收任何并发更新的表/分区调度Clustering。默认情况下更新策略的配置设置为SparkRejectUpdateStrategy。如果某个文件组在Clustering期间有更新,则它将拒绝更新并引发异常。然而在某些用例中,更新是非常稀疏的,并且不涉及大多数文件组。简单拒绝更新的默认策略似乎不公平。在这种用例中用户可以将配置设置为SparkAllowUpdateStregy

我们讨论了关键策略配置,下面列出了与Clustering相关的所有其他配置。在此列表中一些非常有用的配置包括:

配置项解释默认值
hoodie.clustering.async.enabled启用在表上的异步运行Clustering服务。false
hoodie.clustering.async.max.commits通过指定应触发多少次提交来控制异步Clustering的频率。4
hoodie.clustering.preserve.commit.metadata重写数据时保留现有的_hoodie_commit_time。这意味着用户可以在Clustering数据上运行增量查询,而不会产生任何副作用。false

4. 异步Clustering

之前我们已经了解了用户如何设置同步Clustering[7]。此外用户可以利用HoodiecClusteringJob[8]设置两步异步Clustering

4.1 HoodieClusteringJob

随着Hudi版本0.9.0的发布,我们可以在同一步骤中调度和执行Clustering。我们只需要指定-mode-m选项。有如下三种模式:

schedule(调度):制定一个Clustering计划。这提供了一个可以在执行模式下传递的instantexecute(执行):在给定的instant执行Clustering计划,这意味着这里需要instantscheduleAndExecute(调度并执行):首先制定Clustering计划并立即执行该计划。

请注意要在原始写入程序仍在运行时运行作业请启用多写入:

hoodie.write.concurrency.mode=optimistic_concurrency_controlhoodie.write.lock.provider=org.apache.hudi.client.transaction.lock.ZookeeperBasedLockProvider

使用spark submit命令提交HoodieClusteringJob示例如下:

spark-submit \--class org.apache.hudi.utilities.HoodieClusteringJob \/path/to/hudi-utilities-bundle/target/hudi-utilities-bundle_2.12-0.9.0-SNAPSHOT.jar \--props /path/to/config/clusteringjob.properties \--mode scheduleAndExecute \--base-path /path/to/hudi_table/basePath \--table-name hudi_table_schedule_clustering \--spark-memory 1g

clusteringjob.properties配置文件示例如下

hoodie.clustering.async.enabled=truehoodie.clustering.async.max.commits=4hoodie.clustering.plan.strategy.target.file.max.bytes=1073741824hoodie.clustering.plan.strategy.small.file.limit=629145600hoodie.clustering.execution.strategy.class=org.apache.hudi.client.clustering.run.strategy.SparkSortAndSizeExecutionStrategyhoodie.clustering.plan.strategy.sort.columns=column1,column2

4.2 HoodieDeltaStreamer

接着看下如何使用HudiDeltaStreamer。现在我们可以使用DeltaStreamer触发异步Clustering。只需将hoodie.clustering.async.enabledtrue,并在属性文件中指定其他Clustering配置,在启动Deltastreamer时可以将其位置设为-props(与HoodieClusteringJob配置类似)。

使用spark submit命令提交HoodieDeltaStreamer示例如下:

spark-submit \--class org.apache.hudi.utilities.deltastreamer.HoodieDeltaStreamer \/path/to/hudi-utilities-bundle/target/hudi-utilities-bundle_2.12-0.9.0-SNAPSHOT.jar \--props /path/to/config/clustering_kafka.properties \--schemaprovider-class org.apache.hudi.utilities.schema.SchemaRegistryProvider \--source-class org.apache.hudi.utilities.sources.AvroKafkaSource \--source-ordering-field impresssiontime \--table-type COPY_ON_WRITE \--target-base-path /path/to/hudi_table/basePath \--target-table impressions_cow_cluster \--op INSERT \--hoodie-conf hoodie.clustering.async.enabled=true \--continuous

4.3 Spark Structured Streaming

我们还可以使用Spark结构化流启用异步Clustering,如下所示。

val commonOpts = Map(   "hoodie.insert.shuffle.parallelism" -> "4",   "hoodie.upsert.shuffle.parallelism" -> "4",   DataSourceWriteOptions.RECORDKEY_FIELD.key -> "_row_key",   DataSourceWriteOptions.PARTITIONPATH_FIELD.key -> "partition",   DataSourceWriteOptions.PRECOMBINE_FIELD.key -> "timestamp",   HoodieWriteConfig.TBL_NAME.key -> "hoodie_test")def getAsyncClusteringOpts(isAsyncClustering: String,                            clusteringNumCommit: String,                            executionStrategy: String):Map[String, String] = {   commonOpts + (DataSourceWriteOptions.ASYNC_CLUSTERING_ENABLE.key -> isAsyncClustering,           HoodieClusteringConfig.ASYNC_CLUSTERING_MAX_COMMITS.key -> clusteringNumCommit,           HoodieClusteringConfig.EXECUTION_STRATEGY_CLASS_NAME.key -> executionStrategy   )}def initStreamingWriteFuture(hudiOptions: Map[String, String]): Future[Unit] = {   val streamingInput = // define the source of streaming   Future {      println("streaming starting")      streamingInput              .writeStream              .format("org.apache.hudi")              .options(hudiOptions)              .option("checkpointLocation", basePath + "/checkpoint")              .mode(Append)              .start()              .awaitTermination(10000)      println("streaming ends")   }}def structuredStreamingWithClustering(): Unit = {   val df = //generate data frame   val hudiOptions = getClusteringOpts("true", "1", "org.apache.hudi.client.clustering.run.strategy.SparkSortAndSizeExecutionStrategy")   val f1 = initStreamingWriteFuture(hudiOptions)   Await.result(f1, Duration.Inf)}

5. 总结和未来工作

在这篇文章中,我们讨论了不同的Clustering策略以及如何设置异步Clustering。未来的工作包括:

Clustering支持更新。支持Clustering的CLI工具。

另外Flink支持Clustering已经有相应Pull Request[9],有兴趣的小伙伴可以关注该PR。

可以查看JIRA[10]了解更多关于此问题的开发,我们期待社会各界的贡献,希望你喜欢这个博客!

引用链接

[1] 并发写入: https://hudi.apache.org/docs/concurrency_control#enabling
[2] 此配置: http://hudi.apache.org/docs/next/configurations#hoodieclusteringplanstrategyclass
[3] 小文件限制: http://hudi.apache.org/docs/next/configurations/#hoodieclusteringplanstrategysmallfilelimit
[4] 此配置: http://hudi.apache.org/docs/next/configurations/#hoodieclusteringplanstrategymaxbytespergroup
[5] 此配置: http://hudi.apache.org/docs/next/configurations/#hoodieclusteringexecutionstrategyclass
[6] 最大文件大小: http://hudi.apache.org/docs/next/configurations/#hoodieparquetmaxfilesize
[7] 同步Clusteringhttp://hudi.apache.org/blog/2021/01/27/hudi-clustering-intro#setting-up-clustering
[8] HoodiecClusteringJobhttps://cwiki.apache.org/confluence/display/HUDI/RFC+-+19+Clustering+data+for+freshness+and+query+performance#RFC19Clusteringdataforfreshnessandqueryperformance-SetupforAsyncclusteringJob
[9] Pull Request: https://github.com/apache/hudi/pull/3599
[10] JIRA: https://issues.apache.org/jira/browse/HUDI-1042


推荐阅读

使用 Flink Hudi 构建流式数据湖

Apache Hudi内核之文件标记机制深入解析

Apache Hudi助力Uber低成本构建开源大数据平台

Apache Hudi 0.9.0版本重磅发布!更强大的流式数据湖平台

更进一步节省空间!Apache Hudi支持虚拟键

引用链接

[1] 并发写入: https://hudi.apache.org/docs/concurrency_control#enabling
[2] 此配置: http://hudi.apache.org/docs/next/configurations#hoodieclusteringplanstrategyclass
[3] 小文件限制: http://hudi.apache.org/docs/next/configurations/#hoodieclusteringplanstrategysmallfilelimit
[4] 此配置: http://hudi.apache.org/docs/next/configurations/#hoodieclusteringplanstrategymaxbytespergroup
[5] 此配置: http://hudi.apache.org/docs/next/configurations/#hoodieclusteringexecutionstrategyclass
[6] 最大文件大小: http://hudi.apache.org/docs/next/configurations/#hoodieparquetmaxfilesize
[7] 同步Clusteringhttp://hudi.apache.org/blog/2021/01/27/hudi-clustering-intro#setting-up-clustering
[8] HoodiecClusteringJobhttps://cwiki.apache.org/confluence/display/HUDI/RFC+-+19+Clustering+data+for+freshness+and+query+performance#RFC19Clusteringdataforfreshnessandqueryperformance-SetupforAsyncclusteringJob
[9] Pull Request: https://github.com/apache/hudi/pull/3599
[10] JIRA: https://issues.apache.org/jira/browse/HUDI-1042


浏览 120
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报