SLAM技术大解析:它是如何帮助机器人实现智能行走的?

共 1999字,需浏览 4分钟

 ·

2021-06-13 14:09

点击上方小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

本文转自:新机器视觉

对于扫地机器人相信很多人并不陌生,早期的扫地机器人只能实现室内的简单清扫,在房间内随机游走,经常出现碰壁现象。而如今随着SLAM技术在扫地机器人中的应用,目前的扫地机器人已变得非常智能了,可通过传感器对室内的环境进行扫描建图,并实现自主规划式清扫,还能做到自主回充、断点续扫等功能。


通过以上介绍,我们可以总结出,扫地机器人要真正实现智能清扫,至少需要做到以下几点:


1.知道自己在哪(定位):也就是扫地机器人在工作过程中需要清楚自己所在房间的具体位置。


2.了解周围环境是什么样子(建图):也就是需要知道整个房间的地面结构信息。


3.该如何到达指定地点(路径规划):当扫地机器人要到达某个指定地点时,它能以最优路线到达目的地,并绕开障碍物。


有以上三大能力的扫地机器人就能变的非常智能了,不会像无头苍蝇一样在室内随机乱跑,而是可以从任意位置出发,根据建立好的地图实现规划式清扫,当然,扫地机器人也会根据当前定位及清扫情况,在建立好的地图基础上进行实时更新。



看完上面的例子,我们再回到SLAM的定义上,SLAM就是机器人从未知环境的未知地点出发,在运动过程中通过重复观测到的地图特征(比如,墙角,柱子等)定位自身位置和姿态,再根据自身位置增量式的构建地图,从而达到同时定位和地图构建的目的。SLAM的全称为Simultaneous Localization And Mapping即「同时定位与地图构建」


目前用于SLAM的传感器主要分为激光雷达及视觉传感器两种。


激光SLAM采用单线或多线激光雷达,一般用于室内机器人及无人驾驶领域,激光雷达的出现和普及使得测量更快更准,信息更丰富。激光雷达采集到的物体信息呈现出一系列分散的、具有准确角度和距离信息的点,被称为点云。通常,激光SLAM系统通过对不同时刻两片点云的匹配与比对,计算激光雷达相对运动的距离和姿态的改变,也就完成了对机器人自身的定位。


相对来说,激光测距较为准确,误差模型简单,在室内外环境中均能稳定运行,点云的处理也比较容易。同时,点云信息本身包含直接的几何关系,使得机器人的路径规划和导航变得直观。


视觉SLAM也有类似的特点,它可从环境中获取海量的、富于冗余的纹理信息,拥有超强的场景辨识能力。早期的视觉SLAM基于滤波理论,其非线性的误差模型和巨大的计算量成为了它实用落地的障碍。近年来,随着具有稀疏性的非线性优化理论(Bundle Adjustment)以及相机技术、计算性能的进步,实时运行的视觉SLAM已经不再是梦想。



视觉SLAM的优点是它所利用的丰富纹理信息。例如两块尺寸相同内容却不同的广告牌,基于点云的激光SLAM算法无法区别他们,而视觉则可以轻易分辨。这带来了重定位、场景分类上无可比拟的巨大优势。同时,视觉信息可以较为容易的被用来跟踪和预测场景中的动态目标,如行人、车辆等,对于在复杂动态场景中的应用这是至关重要的。


总的来说,激光SLAM及视觉SLAM都有其局限性,未来相互融合将是大势所趋,但从目前两种技术的发展情况来看,基于激光雷达的SLAM相对来说更为成熟,产品落地也更为丰富。


下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲
小白学视觉公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲
小白学视觉公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群


欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~


浏览 41
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报