用Excel体验梯度下降法
作者:气象学渣
来源:气象学渣

但这也直接导致了我们对其原理与实现过程缺乏直观的感受,本篇借助Excel实现梯度下降法求解二元线性方程,并绘图呈现优化过程,以进一步加深理解。
整个求解过程与神经网络相似:选择一个合适的损失函数,通过学习大量样本,不断优化模型参数,逐渐'猜测'出样本特征与样本标签之间的关系与规律,使得模型输出与标签之间的损失最小。



当函数维度增加,则目标变成寻找更高维空间的极小值点。以三维空间为例,该过程就好比从山上下山一样,总是寻找当前脚下四周最陡峭的地方落脚,这样下山当然最快了。


您的关注是对小渣莫大的鼓舞
点击下方二维码添加订阅,下期再会咯!
评论