原驼爆火:大模型小型化的神器,开源了!

共 2679字,需浏览 6分钟

 ·

2023-05-31 21:25


大家好,我是DASOU

自动测试分数达到ChatGPT的99.3%人类难以分辨两者的回答……

这是开源大模型最新成果,来自羊驼家族的又一重磅成员——华盛顿大学原驼(Guanaco)。

a992fdc8802d837430894631d6931049.webp

更关键的是,与原驼一起提出的新方法QLoRA把微调大模型的显存需求从>780GB降低到<48GB

开源社区直接开始狂欢,相关论文成为24小时内关注度最高的AI论文。

1a03952921e7254a155a9715477e8b74.webpimg

以Meta的美洲驼LLaMA为基础,得到原驼650亿参数版只需要48GB显存单卡微调24小时330亿参数版只需要24GB显存单卡微调12小时

24GB显存,也就是一块消费级RTX3090或RTX4090显卡足以。

不少网友在测试后也表示,更喜欢它而不是ChatGPT。

d849e8bc16707a18cea5e685ccda7185.webp

英伟达科学家Jim Fan博士对此评价为:大模型小型化的又一里程碑。

先扩大规模再缩小,将成为开源AI社区的节奏。

8bdc07190fa466ade9951488f00f1f9c.webp

而新的高效微调方法QLoRA迅速被开源社区接受,HuggingFace也在第一时间整合上线了相关代码。

5404d37b411b1d6ad28f055a1048d26c.webp

GPT-4做裁判,原驼得分达到ChatGPT的99.3%

论文中,团队对原驼总共做了三项测试,自动评估、随机匹配和人类评估。

测试数据来自小羊驼Vicuna和Open Assistant。

自动评估由大模型天花板GPT-4当裁判,对不同模型的回答进行打分,以ChatGPT(GPT3.5)的成绩作为100%。

最终原驼650亿版得分达到ChatGPT的99.3%,而GPT-4自己的得分是114.5%,谷歌Bard是94.8%。

53a4eff192df61176717f227e468ecb9.webp

随机匹配,采用棋类专业比赛和电子竞技同款的Elo记分机制,由GPT-4和人类共同做裁判。

原驼650亿和330亿版最终得分超过ChatGPT(GPT3.5)。

7da9e5b62d87e82ce8725c9c397c56da.webp

人类评估,则是把原驼650亿版的回答和ChatGPT的回答匿名乱序放在一起,人类来盲选哪个最好。

论文共同一作表示,研究团队里的人都很难分辨出来,并把测试做成了一个小游戏放在Colab上,开放给大家挑战。

16fab2874327fffc72fd1a7ec6f56779.webp

这里节选其中一个问题(附中文翻译),你能分辨出哪个是ChatGPT回答的吗?

问题:How can I improve my time management skills?(如何提高时间管理技能?)

00583e9aeb3b7f3a4980a180836bfc76.webpfc22897378aefa9d8ccfb0e53390f5d5.webp

(完整测试地址在文末)

总的来说,原驼的优势在于不容易被问题中的错误信息误导,比如能指出地球从来没有被科学界认为是平的。

6a197bdc19a3189c1285f11f10260a0e.webp

以及擅长心智理论(Theory of Mind),也就是能推测理解他人的心理状态

0586a0bff7d0152eda680592b83a2363.webp

但原驼也并非没有弱点,团队发发现它不太擅长数学,以及容易用提示注入攻击把要求保密的信息从它嘴里套出来。

f94c206688561c3b5e1eddd6498f1939.webp

也有网友表示,虽然一个模型能在某个数据集上无限接近ChatGPT,但像ChatGPT那样通用还是很难的。

b5d5b5f15dcfd899d219a76556ab878d.webp

全新方法QLoRA,iPhone都能微调大模型了

原驼论文的核心贡献是提出新的微调方法QLoRA

其中Q代表量化(Quantization),用低精度数据类型去逼近神经网络中的高精度浮点数,以提高运算效率。

LoRA是微软团队在2021年提出的低秩适应(Low-Rank Adaptation)高效微调方法,LoRA后来被移植到AI绘画领域更被大众熟知,但最早其实就是用于大语言模型的。

通常来说,LoRA微调与全量微调相比效果会更差,但团队将LoRA添加到所有的线性层解决了这个问题。

76974d01d08ed61f4bf1962d35c45267.webpimg

具体来说,QLoRA结合了4-bit量化和LoRA,以及团队新创的三个技巧:新数据类型4-bit NormalFloat分页优化器(Paged Optimizers)和双重量化(Double Quantization)。

最终QLoRA让4-bit的原驼在所有场景和规模的测试中匹配16-bit的性能

a79454e5ba401288e82a38b6fa6effb4.webpimg

QLoRA的高效率,让团队在华盛顿大学的小型GPU集群上每天可以微调LLaMA 100多次……

最终使用Open Assistant数据集微调的版本性能胜出,成为原驼大模型。

Open Assistant数据集来自非盈利研究组织LAION(训练Stable Diffusion的数据集也来自这里),虽然只有9000个样本但质量很高,经过开源社区的人工仔细验证。

这9000条样本用于微调大模型,比100万条指令微调(Instruction Finetune)样本的谷歌FLAN v2效果还好。

研究团队也据此提出两个关键结论:

  • 数据质量 >> 数据数量
  • 指令微调有利于推理,但不利于聊天

最后,QLoRA的高效率,还意味着可以用在手机上,论文共同一作Tim Dettmers估计以iPhone 12 Plus的算力每个晚上能微调300万个单词的数据量。

这意味着,很快手机上的每个App都能用上专用大模型。

5dba658266e184835f36743fe07e77b8.webpimg

论文:https://arxiv.org/abs/2305.14314

GitHub:https://github.com/artidoro/qlora

与ChatGPT对比测试:https://colab.research.google.com/drive/1kK6xasHiav9nhiRUJjPMZb4fAED4qRHb

330亿参数版在线试玩:https://huggingface.co/spaces/uwnlp/guanaco-playground-tgi

参考链接:[1]https://twitter.com/Tim_Dettmers/status/1661379376225697794 [2]https://huggingface.co/blog/4bit-transformers-bitsandbytes

浏览 92
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报