TinyLlama-1.1B小型但强大的语言模型

联合创作 · 2023-09-26 00:10

TinyLlama 项目旨在在 3 万亿 tokens 上进行预训练,构建一个拥有11亿参数的Llama模型。经过精心优化,"仅"需16块A100-40G的GPU,便可在90天内完成这个任务。训练已于2023-09-01开始。

该项目采用了与Llama 2完全相同的架构和分词器。这意味着TinyLlama可以在许多基于Llama的开源项目中即插即用。此外,TinyLlama只有1.1B的参数,体积小巧,适用于需要限制计算和内存占用的多种应用。

发布时间表

项目团队会根据以下计划逐步发布中间checkpoint。同时也列了一些基线模型进行比较。

Date HF Checkpoint Tokens Step HellaSwag Acc_norm
Baseline StableLM-Alpha-3B 800B -- 38.31
Baseline Pythia-1B-intermediate-step-50k-105b 105B 50k 42.04
Baseline Pythia-1B 300B 143k 47.16
2023-09-04 TinyLlama-1.1B-intermediate-step-50k-105b 105B 50k 43.50
2023-09-16 -- 500B -- --
2023-10-01 -- 1T -- --
2023-10-16 -- 1.5T -- --
2023-10-31 -- 2T -- --
2023-11-15 -- 2.5T -- --
2023-12-01 -- 3T -- --

潜在场景

小型但强大的语言模型对许多应用都很有用。以下是一些潜在的场景:

  • 帮助对大型模型进行speculative decoding。
  • 在边缘装置上运行,比如离线的实时机器翻译 (TinyLlama的4比特量化版本的模型权重只需要550MB的内存)。
  • 在游戏中实现实时对话生成(因为还得给游戏本身留显存所以模型要小)。

此外,项目代码可以给初学者做一个入门预训练的简洁参考。如果你要训练50亿以下参数的语言模型, 你其实不需要Megatron-LM。

训练细节

以下是训练设置的一些细节:

Setting Description
Parameters 1.1B
Attention Variant Grouped Query Attention
Model Size Layers: 22, Heads: 32, Query Groups: 4, Embedding Size: 2048, Intermediate Size (Swiglu): 5632
Sequence Length 2048
Batch Size 2 million tokens (2048 * 1024)
Learning Rate 4e-4
Learning Rate Schedule Cosine with 2000 warmup steps
Training Data Slimpajama & Starcoderdata
Data Preprocessing Excluded GitHub subset of Slimpajama; Sampled all code from Starcoderdata
Combined Dataset Size Around 950B tokens
Total Tokens During Training 3 trillion (slightly more than 3 epochs/143k steps)
Natural Language to Code Ratio 7:3
Hardware 16 A100-40G GPUs

速度极快

代码库支持以下特性:

  • multi-gpu and multi-node distributed training with FSDP.
  • flash attention 2.
  • fused layernorm.
  • fused swiglu.
  • fused cross entropy loss .
  • fused rotary positional embedding.

有了这些优化,可以达到24k tokens/秒/A100的训练速度,也就是56%的MFU(在A100-80G上的MFU会更高)。这个速度可以让你可以在8个A100上用32小时训练一个chinchilla-optimial的模型(11亿参数,220亿token)。这些优化也大大减少了显存占用,可以把11亿参数的模型塞入40GB的GPU里面还能同时维持16k tokens的per-gpu batch size。只需要把batch size改小一点, 你就可以在RTX 3090/4090上面训练TinyLlama。

下面是其代码库与Pythia和MPT的训练速度的比较。

Model A100 GPU hours taken on 300B tokens
TinyLlama-1.1B 3456
Pythia-1.0B 4830
MPT-1.3B 7920

Pythia的数字来自他们的论文。MPT的数字来自这里,作者说MPT-1.3B"was trained on 440 A100-40GBs for about half a day" on 200B tokens。

TinyLlama是一个相对较小的模型,使用了GQA,这意味着它在推理期间也很快。以下是测量的一些推理速度:

Framework Device Settings Throughput (tokens/sec)
Llama.cpp Mac M2 16GB RAM batch_size=1; 4-bit inference 71.8
vLLM A40 GPU batch_size=100, n=10 7094.5
浏览 6
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报