神经网络权值直接确定法
《神经网络权值直接确定法》提出了一种神经网络权值直接确定的方法。不同于传统的神经网络迭代学习思想,新方法可以一步直接计算出学习型神经网络的最优权值,展示其在计算速度和学习精度方面的优越性。考虑到人工神经网络拓扑结构与其性能有着密切的关系,因此,围绕网络结构(隐神经元数)进行性能优化一直以来都是人工神经网络研究的一个重要方向;基于提出的权值直接确定方法,《神经网络权值直接确定法》提出了神经网络结构(隐神经元数)最优确定算法,从而可以快速确定性地得到神经网络的最佳(或较佳)拓扑结构。
评论