凸优化 : 算法与复杂性

联合创作 · 2023-09-14 20:56

本书介绍了凸优化中的主要复杂性定理及其相应的算法。从黑箱优化的基本理论出发,内容材料是朝着结构优化和随机优化的新进展。我们对黑箱优化的介绍,深受Nesterov的开创性著作和Nemirovski讲稿的影响,包括对切割平面方法的分析,以及(加速)梯度下降方案。我们还特别关注非欧几里德的情况(相关算法包括Frank Wolfe、镜像下降和对偶平均法),并讨论它们在机器中的相关性学习。我们慢慢的介绍了FISTA(优化一个光滑项和一个简单的非光滑项的和)、鞍点镜像代理(Nemirovski平滑替代Nesterov的光滑)和一个对内点方法的简明描述。在随机优化中,我们讨论了随机梯度下降、小批量、随机坐标下降和次线性算法。我们还简单地讨论了组合问题的凸松弛和随机性对取整(四舍五入)解的使用,以及基于随机游动的方法。

塞巴斯蒂安·布贝克(Sébastien Bubeck)是微软Redmond研究院理论组的首席研究员,曾担任COLT 2013、COLT 2014的联席主席,NIPS 2012、NIPS 2014、NIPS 2016、COLT 2013、COLT 2014、COLT 2015、COLT 2016、ICML 2015、ICML 2016、ALT 2013、ALT 2014的项目委员会成员,也是COLT的指导委员会成员。其研究兴趣包括机器学习、凸优化、统计网络分析、随机图和随机矩阵,以及信息论在学习、优化和概率中的应用。

浏览 8
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

编辑 分享
举报