联邦学习

0粉丝
如何在保证本地训练数据不公开的前提下,实现多个数据拥有者协同训练一个共享的机器学习模型?传统的机器学习方法需要将所有的数据集中到一个地方(例如,数据中
简介
如何在保证本地训练数据不公开的前提下,实现多个数据拥有者协同训练一个共享的机器学习模型?传统的机器学习方法需要将所有的数据集中到一个地方(例如,数据中心),然后进行机器学习模型的训练。但这种基于集中数据的做法无疑会严重侵害用户隐私和数据安全。如今,世界上越来越多的人开始强烈要求科技公司必须根据用户隐私法律法规妥善地处理用户的数据,欧盟的《通用数据保护条例》是一个很好的例子。在本书中,我们将描述联邦... 更多
属性
作者
杨强
出版社
电子工业出版社
出品方
博文视点
ISBN
9787121385223
出版年
2020-4-1
装帧
平装
价格
89
页数
208

时光轴

里程碑1
LOG0
2023
2023-09
轻识收录
评价
0.0(满分 10 分)0 个评分
什么是点评分
图片
表情
全部评价( 0)
推荐率 100%