ArrayList和LinkedList如何实现的?我看你还有机会!
前言
说真的,在 Java 使用最多的集合类中,List 绝对占有一席之地的,它和 Map 一样适用于很多场景,非常方便我们的日常开发,毕竟存储一个列表的需求随处可见。尽管如此,还是有很多同学没有弄明白 List 中 ArrayList 和 LinkedList 有什么区别,这简直太遗憾了,这两者其实都是数据结构中的基础内容,这篇文章会从基础概念开始,分析两者在 Java 中的具体源码实现,寻找两者的不同之处,最后思考它们使用时的注意事项。
这篇文章会包含以下内容。
介绍线性表的概念,详细介绍线性表中数组和链表的数据结构。
进行 ArrayList 的源码分析,比如存储结构、扩容机制、数据新增、数据获取等。
进行 LinkedList 的源码分析,比如它的存储结构、数据插入、数据查询、数据删除和 LinkedList 作为队列的使用方式等。
进行 ArrayList 和 LinkedList 的总结。
线性表
要研究 ArrayList 和 LinkedList ,首先要弄明白什么是线性表,这里引用百度百科的一段文字。
线性表是最基本、最简单、也是最常用的一种数据结构。线性表(linear list)是数据结构的一种,一个线性表是n个具有相同特性的数据元素的有限序列。
你肯定看到了,线性表在数据结构中是一种最基本、最简单、最常用的数据结构。它将数据一个接一个的排成一条线(可能逻辑上),也因此线性表上的每个数据只有前后两个方向,而在数据结构中,数组、链表、栈、队列都是线性表。你可以想象一下整整齐齐排队的样子。
看到这里你可能有疑问了,有线性表,那么肯定有非线性表喽?没错。二叉树和图就是典型的非线性结构了。不要被这些花里胡哨的图吓到,其实这篇文章非常简单,希望同学耐心看完点个赞。
数组
既然知道了什么是线性表,那么理解数组也就很容易了,首先数组是线性表的一种实现。数组是由相同类型元素组成的一种数据结构,数组需要分配一段连续的内存用来存储。注意关键词,相同类型,连续内存,像这样。
不好意思放错图了,像这样。
上面的图可以很直观的体现数组的存储结构,因为数组内存地址连续,元素类型固定,所有具有快速查找某个位置的元素的特性;同时也因为数组需要一段连续内存,所以长度在初始化长度已经固定,且不能更改。Java 中的 ArrayList 本质上就是一个数组的封装。
链表
链表也是一种线性表,和数组不同的是链表不需要连续的内存进行数据存储,而是在每个节点里同时存储下一个节点的指针,又要注意关键词了,每个节点都有一个指针指向下一个节点。那么这个链表应该是什么样子呢?看图。
哦不,放错图了,是这样。
上图很好的展示了链表的存储结构,图中每个节点都有一个指针指向下一个节点位置,这种我们称为单向链表;还有一种链表在每个节点上还有一个指针指向上一个节点,这种链表我们称为双向链表。图我就不画了,像下面这样。
可以发现链表不必连续内存存储了,因为链表是通过节点指针进行下一个或者上一个节点的,只要找到头节点,就可以以此找到后面一串的节点。不过也因此,链表在查找或者访问某个位置的节点时,需要**O(n)的时间复杂度。但是插入数据时可以达到O(1)**的复杂度,因为只需要修改节点指针指向。
ArratList
上面介绍了线性表的概念,并举出了两个线性表的实际实现例子,既数组和链表。在 Java 的集合类 ArrayList 里,实际上使用的就是数组存储结构,ArrayList 对 Array 进行了封装,并增加了方便的插入、获取、扩容等操作。因为 ArrayList 的底层是数组,所以存取非常迅速,但是增删时,因为要移动后面的元素位置,所以增删效率相对较低。那么它具体是怎么实现的呢?不妨深入源码一探究竟。
ArrayList 存储结构
查看 ArrayList 的源码可以看到它就是一个简单的数组,用来数据存储。
/**
* The array buffer into which the elements of the ArrayList are stored.
* The capacity of the ArrayList is the length of this array buffer. Any
* empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
* will be expanded to DEFAULT_CAPACITY when the first element is added.
*/
transient Object[] elementData; // non-private to simplify nested class access
/**
* Shared empty array instance used for default sized empty instances. We
* distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
* first element is added.
*/
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
/**
* Default initial capacity.
*/
private static final int DEFAULT_CAPACITY = 10;
通过上面的注释了解到,ArrayList 无参构造时是会共享一个长度为 0 的数组 DEFAULTCAPACITY_EMPTY_ELEMENTDATA. 只有当第一个元素添加时才会第一次扩容,这样也防止了创建对象时更多的内存浪费。
ArrayList 扩容机制
我们都知道数组的大小一但确定是不能改变的,那么 ArrayList 明显可以不断的添加元素,它的底层又是数组,它是怎么实现的呢?从上面的 ArrayList 存储结构以及注释中了解到,ArrayList 在初始化时,是共享一个长度为 0 的数组的,当第一个元素添加进来时会进行第一次扩容,我们可以想像出 ArrayList 每当空间不够使用时就会进行一次扩容,那么扩容的机制是什么样子的呢?
依旧从源码开始,追踪 add() 方法的内部实现。
/**
* Appends the specified element to the end of this list.
*
* @param e element to be appended to this list
* @return true (as specified by {@link Collection#add})
*/
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
// 开始检查当前插入位置时数组容量是否足够
private void ensureCapacityInternal(int minCapacity) {
// ArrayList 是否未初始化,未初始化是则初始化 ArrayList ,容量给 10.
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}
ensureExplicitCapacity(minCapacity);
}
// 比较插入 index 是否大于当前数组长度,大于就 grow 进行扩容
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
/**
* Increases the capacity to ensure that it can hold at least the
* number of elements specified by the minimum capacity argument.
*
* @param minCapacity the desired minimum capacity
*/
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
// 扩容规则是当前容量 + 当前容量右移1位。也就是1.5倍。
int newCapacity = oldCapacity + (oldCapacity >> 1);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
// 是否大于 Int 最大值,也就是容量最大值
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
// 拷贝元素到扩充后的新的 ArrayList
elementData = Arrays.copyOf(elementData, newCapacity);
}
通过源码发现扩容逻辑还是比较简单的,整理下具体的扩容流程如下:
开始检查当前插入位置时数组容量是否足够 ArrayList 是否未初始化,未初始化是则初始化 ArrayList ,容量给 10. 判断当前要插入的下标是否大于容量 不大于,插入新增元素,新增流程完毕。 如果所需的容量大于当前容量,开始扩充。 扩容规则是当前容量 + 当前容量右移1位。也就是1.5倍。 int newCapacity = oldCapacity + (oldCapacity >> 1);
如果扩充之后还是小于需要的最小容量,则把所需最小容量作为容量。 如果容量大于默认最大容量,则使用 最大值 Integer 作为容量。 拷贝老数组元素到扩充后的新数组 插入新增元素,新增流程完毕。
ArrayList 数据新增
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e; // 直接赋值
return true;
}
/**
* Inserts the specified element at the specified position in this
* list. Shifts the element currently at that position (if any) and
* any subsequent elements to the right (adds one to their indices).
*
* @param index index at which the specified element is to be inserted
* @param element element to be inserted
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public void add(int index, E element) {
rangeCheckForAdd(index);
ensureCapacityInternal(size + 1); // Increments modCount!!
// 指定下标开始所有元素后移一位
System.arraycopy(elementData, index, elementData, index + 1,size - index);
elementData[index] = element;
size++;
}
ArrayList 数据获取
public E get(int index) {
rangeCheck(index);
return elementData(index);
}
E elementData(int index) {
return (E) elementData[index];
}
LinkedList
LinkedList 存储结构
transient int size = 0;
/**
* Pointer to first node.
* Invariant: (first == null && last == null) ||
* (first.prev == null && first.item != null)
*/
transient Nodefirst;
/**
* Pointer to last node.
* Invariant: (first == null && last == null) ||
* (last.next == null && last.item != null)
*/
transient Nodelast;
/**
* Constructs an empty list.
*/
public LinkedList() {
}
private static class Node<E> {
E item;
Nodenext;
Nodeprev;
Node(Nodeprev, E element, Node next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
LinkedList 数据获取
public E get(int index) {
checkElementIndex(index);
return node(index).item;
}
/**
* Returns the (non-null) Node at the specified element index.
*/
// 遍历查找 index 位置的节点信息
Nodenode(int index) {
// assert isElementIndex(index);
// 这里判断 index 是在当前链表的前半部分还是后半部分,然后决定是从
// first 向后查找还是从 last 向前查找。
if (index < (size >> 1)) {
Nodex = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Nodex = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
LinkedList 数据新增
尾部插入 public boolean add(E e) {
linkLast(e);
return true;
}
void linkLast(E e) {
final Nodel = last;
// 新节点,prev 为当前尾部节点,e为元素值,next 为 null,
final NodenewNode = new Node<>(l, e, null);
last = newNode;
if (l == null)
first = newNode;
else
// 目前的尾部节点 next 指向新的节点
l.next = newNode;
size++;
modCount++;
}默认的 add 方式就是尾部新增了,尾部新增的逻辑很简单,只需要创建一个新的节点,新节点的 prev 设置现有的末尾节点,现有的末尾 Node 指向新节点 Node,新节点的 next 设为 null 即可。 中间新增 下面是在指定位置新增元素,涉及到的源码部分。 public void add(int index, E element) {
checkPositionIndex(index);
if (index == size)
// 如果位置就是当前链表尾部,直接尾插
linkLast(element);
else
// 获取 index 位置的节点,插入新的元素
linkBefore(element, node(index));
}
/**
* Inserts element e before non-null Node succ.
*/
// 在指定节点处新增元素,修改指定元素的下一个节点为新增元素,新增元素的下一个节点是查找到得 node 的next节点指向,
// 新增元素的上一个节点为查找到的 node 节点,查找到的 node 节点的 next 指向 node 的 prev 修改为新 Node
void linkBefore(E e, Nodesucc) {
// assert succ != null;
final Nodepred = succ.prev;
final NodenewNode = new Node<>(pred, e, succ);
succ.prev = newNode;
if (pred == null)
first = newNode;
else
pred.next = newNode;
size++;
modCount++;
}可以看到指定位置插入元素主要分为两个部分,第一个部分是查找 node 节点部分,这部分就是上面介绍的 LinkedList 数据获取部分, 第二个部分是在查找到得 node 对象后插入元素。主要就是修改 node 的 next 指向为新节点,新节点的 prev 指向为查找到的 node 节点,新节点的 next 指向为查找到的 node 节点的 next 指向。查找到的 node 节点的 next 指向的 node 节点的 prev 修改为新节点。
LinkedList 数据删除
public E remove(int index) {
checkElementIndex(index);
return unlink(node(index));
}
/**
* Unlinks non-null node x.
*/
E unlink(Nodex) {
// assert x != null;
final E element = x.item;
final Nodenext = x.next;
final Nodeprev = x.prev;
if (prev == null) {
first = next;
} else {
prev.next = next;
x.prev = null;
}
if (next == null) {
last = prev;
} else {
next.prev = prev;
x.next = null;
}
x.item = null;
size--;
modCount++;
return element;
}
扩展
public class LinkedList<E> extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable
Queue queue = new LinkedList<>();
queue.add("a");
queue.add("b");
queue.add("c");
queue.add("d");
System.out.println(queue.poll());
System.out.println(queue.poll());
System.out.println(queue.poll());
System.out.println(queue.poll());
// result:
// a
// b
// c
// d
poll
时删除 first 节点不就完事了嘛。总结
遍历,ArrayList 每次都是直接定位,LinkedList 通过 next 节点定位,不相上下。这里要注意的是 LinkedList 只有使用迭代器的方式遍历才会使用 next 节点。如果使用 get
,则因为遍历查找效率低下。新增,ArrayList 可能会需要扩容,中间插入时,ArrayList 需要后移插入位置之后的所有元素。LinkedList 直接修改 node 的 prev, next 指向,LinkedList 胜出。 删除,同 2. 随机访问指定位置,ArrayList 直接定位,LinkedList 从头会尾开始查找,数组胜出。
有道无术,术可成;有术无道,止于术
欢迎大家关注Java之道公众号
好文章,我在看❤️