(附链接)用OpenCV的DNN模块做Yolov5目标检测
一个专注于计算机视觉与机器学习知识分享的公众号
转载自 | 计算机视觉研究院
OpenCV中的dnn(Deep Neural Network module)模块是专门用来实现深度神经网络相关功能的模块。OpenCV自己并不能训练神经网络模型,但是它可以载入别的深度学习框架(例如TensorFlow、Caffe等等)训练好的模型,然后使用该模型做inference(预测)。而且OpenCV在载入模型时会使用自己的dnn模块对模型重写,使得模型的运行效率更高。所以如果你想在OpenCV项目中融入深度学习模型,可以先用自己熟悉的深度学习框架训练好,然后使用OpenCV的dnn模块载入。
在yolov5之前的yolov3和yolov4的官方代码都是基于darknet框架的实现的,因此opencv的dnn模块做目标检测时,读取的是.cfg和.weight文件,那时候编写程序很顺畅,没有遇到bug。但是yolov5的官方代码(https://github.com/ultralytics/yolov5)是基于pytorch框架实现的,但是opencv的dnn模块不支持读取pytorch的训练模型文件的。如果想要把pytorch的训练模型.pth文件加载到opencv的dnn模块里,需要先把pytorch的训练模型.pth文件转换到.onnx文件,然后才能载入到opencv的dnn模块里。
因此,用opencv的dnn模块做yolov5目标检测的程序,包含两个步骤:(1).把pytorch的训练模型.pth文件转换到.onnx文件。(2).opencv的dnn模块读取.onnx文件做前向计算。
(1).把pytorch的训练模型.pth文件转换到.onnx文件
在做这一步时,我得吐槽一下官方代码:https://github.com/ultralytics/yolov5,这套程序里的代码混乱,在pytorch里,通常是在.py文件里定义网络结构的,但是官方代码是在.yaml文件定义网络结构,利用pytorch动态图特性,解析.yaml文件自动生成网络结构。在.yaml文件里有depth_multiple和width_multiple,它是控制网络的深度和宽度的参数。这么做的好处是能够灵活的配置网络结构,但是不利于理解网络结构,假如你想设断点查看某一层的参数和输出数值,那就没办法了。因此,在我编写的转换到.onnx文件的程序里,网络结构是在.py文件里定义的。其次,在官方代码里,还有一个奇葩的地方,那就是.pth文件。起初,我下载官方代码到本地运行时,torch.load读取.pth文件总是出错,后来把pytorch升级到1.7,就读取成功了。可以看到版本兼容性不好,这是它的一个不足之处。设断点查看读取的.pth文件里的内容,可以看到ultralytics的.pt文件里既存储有模型参数,也存储有网络结构,还储存了一些超参数,包括anchors,stride等等的。第一次见到有这种操作的,通常情况下,.pth文件里只存储了训练模型参数的。
查看models\yolo.py里的Detect类,在构造函数里,有这么两行代码:
我尝试过把这两行代码改成self.anchors = a 和 self.anchor_grid = a.clone().view(self.nl, 1, -1, 1, 1, 2),程序依然能正常运行,但是torch.save保存模型文件后,可以看到.pth文件里没有存储anchors和anchor_grid了,在百度搜索register_buffer,解释是:pytorch中register_buffer模型保存和加载的时候可以写入和读出。
在这两行代码的下一行:
它的作用是做特征图的输出通道对齐,通过1x1卷积把三种尺度特征图的输出通道都调整到 num_anchors*(num_classes+5)。
阅读Detect类的forward函数代码,可以看出它的作用是根据偏移公式计算出预测框的中心坐标和高宽,这里需要注意的是,计算高和宽的代码:
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
没有采用exp操作,而是直接乘上anchors[i],这是yolov5与yolov3v4的一个最大区别(还有一个区别就是在训练阶段的loss函数里,yolov5采用邻域的正样本anchor匹配策略,增加了正样本。其它的是一些小区别,比如yolov5的第一个模块采用FOCUS把输入数据2倍下采样切分成4份,在channel维度进行拼接,然后进行卷积操作,yolov5的激活函数没有使用Mish)。
现在可以明白Detect类的作用是计算预测框的中心坐标和高宽,简单来说就是生成proposal,作为后续NMS的输入,进而输出最终的检测框。我觉得在Detect类里定义的1x1卷积是不恰当的,应该把它定义在Detect类的外面,紧邻着Detect类之前定义1x1卷积。
在官方代码里,有转换到onnx文件的程序:
python models/export.py --weights yolov5s.pt --img 640 --batch 1
在pytorch1.7版本里,程序是能正常运行生成onnx文件的。观察export.py里的代码,在执行torch.onnx.export之前,有这么一段代码:
注意其中的for循环,我试验过注释掉它,重新运行就会出错,打印出的错误如下:
由此可见,这段for循环代码是必需的。SiLU其实就是swish激活函数,而在onnx模型里是不直接支持swish算子的,因此在转换生成onnx文件时,SiLU激活函数不能直接使用nn.Module里提供的接口,而需要自定义实现它。
(2).opencv的dnn模块读取.onnx文件做前向计算
在生成.onnx文件后,就可以用opencv的dnn模块里的cv2.dnn.readNet读取它。然而,在读取时,出现了如下错误:
我在百度搜索这个问题的解决办法,看到一篇知乎文章(Pytorch转ONNX-实战篇2(实战踩坑总结) - 知乎),文章里讲述的第一条:
于是查看yolov5的代码,在common.py文件的Focus类,torch.cat的输入里有4次切片操作,代码如下:
那么现在需要更换索引式的切片操作,观察到注释的Contract类,它就是用view和permute函数完成切片操作的,于是修改代码如下:
其次,在models\yolo.py里的Detect类里,也有切片操作,代码如下:
前面说过,Detect类的作用是计算预测框的中心坐标和高宽,生成proposal,这个是属于后处理的,因此不需要把它写入到onnx文件里。
总结一下,按照上面的截图代码,修改Focus类,把Detect类里面的1x1卷积定义在紧邻着Detect类之前的外面,然后去掉Detect类,组成新的model,作为torch.onnx.export的输入,
torch.onnx.export(model, inputs, output_onnx, verbose=False, opset_version=12, input_names=['images'], output_names=['out0', 'out1', 'out2'])
最后生成的onnx文件,opencv的dnn模块就能成功读取了,接下来对照Detect类里的forward函数,用python或者C++编写计算预测框的中心坐标和高宽的功能。
周末这两天,我在win10+cpu机器里编写了用opencv的dnn模块做yolov5目标检测的程序,包含Python和C++两个版本的。程序都调试通过了,运行结果也是正确的。我把这套代码发布在github上,地址是:
https://github.com/hpc203/yolov5-dnn-cpp-python
后处理模块,python版本用numpy array实现的,C++版本的用vector和数组实现的,整套程序只依赖opencv库(opencv4版本以上的)就能正常运行,彻底摆脱对深度学习框架pytorch,tensorflow,caffe,mxnet等等的依赖。用openvino作目标检测,需要把onnx文件转换到.bin和.xml文件,相比于用dnn模块加载onnx文件做目标检测是多了一个步骤的。因此,我就想编写一套用opencv的dnn模块做yolov5目标检测的程序,用opencv的dnn模块做深度学习目标检测,在win10和ubuntu,在cpu和gpu上都能运行,可见dnn模块的通用性更好,很接地气。
生成yolov5s_param.pth 的步骤,首先下载https://github.com/ultralytics/yolov5 的源码到本地,在yolov5-master主目录(注意不是我发布的github代码目录)里新建一个.py文件,把下面的代码复制到.py文件里
import torch
from collections import OrderedDict
import pickle
import os
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if __name__=='__main__':
choices = ['yolov5s', 'yolov5l', 'yolov5m', 'yolov5x']
modelfile = choices[0]+'.pt'
utl_model = torch.load(modelfile, map_location=device)
utl_param = utl_model['model'].model
torch.save(utl_param.state_dict(), os.path.splitext(modelfile)[0]+'_param.pth')
own_state = utl_param.state_dict()
print(len(own_state))
numpy_param = OrderedDict()
for name in own_state:
numpy_param[name] = own_state[name].data.cpu().numpy()
print(len(numpy_param))
with open(os.path.splitext(modelfile)[0]+'_numpy_param.pkl', 'wb') as fw:
pickle.dump(numpy_param, fw)
运行这个.py文件,这时候就可以生成yolov5s_param.pth文件。之所以要进行这一步,我在上面讲到过:ultralytics的.pt文件里既存储有模型参数,也存储有网络结构,还储存了一些超参数,包括anchors,stride等等的。torch.load加载ultralytics的官方.pt文件,也就是utl_model = torch.load(modelfile, map_location=device)这行代码,在这行代码后设断点查看utl_model里的内容,截图如下
可以看到utl_model里含有既存储有模型参数,也存储有网络结构,还储存了一些超参数等等的,这会严重影响转onnx文件。此外,我还发现,如果pytorch的版本低于1.7,那么在torch.load加载.pt文件时就会出错的。
因此在程序里,我把模型参数转换到cpu.numpy形式的,最后保存在.pkl文件里。这时候在win10系统cpu环境里,即使你的电脑没有安装pytorch,也能通过python程序访问到模型参数。
pytorch转onnx常见坑:
1. onnx只能输出静态图,因此不支持if-else分支。一次只能走一个分支。如果代码中有if-else语句,需要改写。
2. onnx不支持步长为2的切片。例如a[::2,::2]
3. onnx不支持对切片对象赋值。例如a[0,:,:,:]=b, 可以用torch.cat改写
4. onnx里面的resize要求output shape必须为常量。可以用以下代码解决:
if isinstance(size, torch.Size):
size = tuple(int(x) for x in size)
此外,在torch.onnx.export(model, inputs, output_onnx)的输入参数model里,应该只包含网络结构,也就是说model里只含有nn.Conv2d, nn.MaxPool2d, nn.BatchNorm2d, F.relu等等的这些算子组件,而不应该含有后处理模块的。图像预处理和后处理模块需要自己使用C++或者Python编程实现。
在明白了这些之后,在转换生成onnx文件,你需要执行两个步骤,第一步把原始训练模型.pt文件里的参数保存到新的.pth文件里,第二步编写yolov5.py文件,把yolov5的往来结构定义在.py文件里,此时需要注意网络结构里不能包含切片对象赋值操作,F.interpolate里的size参数需要加int强制转换。在执行完这两步之后才能生成一个opencv能成功读取并且做前向推理的onnx文件。
不过,最近我发现在yolov5-pytorch程序里,其实可以直接把原始训练模型.pt文件转换生成onnx文件的,而且我在一个yolov5检测人脸+关键点的程序里实验成功了。
这套程序发布在github上,地址是 :
https://github.com/hpc203/yolov5-face-landmarks-opencv
https://github.com/hpc203/yolov5-face-landmarks-opencv-v2
这套程序只依赖opencv库就可以运行yolov5检测人脸+关键点,程序依然是包含C++和Python两个版本的,这套程序里还有一个转换生成onnx文件的python程序文件。只需运行这一个.py文件就可以生成onnx文件,而不需要之前讲的那样执行两个步骤,这样大大简化了生成onnx文件的流程,使用方法可以阅读程序里的README文档。
在这个新的转换生成onnx文件的程序里,需要重新定义yolov5网络结构,主要是修改第一个模块Focus,用Contract类替换索引式的切片操作,在最后一个模块Detect类里,只保留三个1x1卷积,剩下的make_grid和decode属于后处理,不能包含在网络结构里,代码截图如下
如果要转换生成onnx文件,需要设置export = True,这时候Detect模块的forward就只进行1x1卷积,这时的网络结构就可以作为torch.onnx.export(model, inputs, output_onnx)的输入参数model。不过由于ultralytics的yolov5代码仓库几乎每天都在更新,因此你现在看到的ultralytics的yolov5里的Detect类很有可能不是这么写的,那这是需要你手动修改程序,然后再运行。
看到最近旷视发布的anchor-free系列的YOLOX,而在github开源的代码里,并没有使用opencv部署的程序。因此,我就编写了一套使用OpenCV部署YOLOX的程序,支持YOLOX-S、YOLOX-M、YOLOX-L、YOLOX-X、YOLOX-Darknet53五种结构,包含C++和Python两种版本的程序实现。在今天我在github发布了这套程序,地址是
https://github.com/hpc203/yolox-opencv-dnn
在旷视发布的YOLOX代码里,提供了在COCO数据集上训练出来的.pth模型文件,并且也提供了导出onnx模型的export_onnx.py文件,起初我运行export_onnx.py生成onnx文件之后Opencv读取onnx文件失败了,报错原因跟文章最开始的第(2)节里的一样,这说明在YOLOX的网络结构里有切片操作,经过搜索后,在 yolox\models\network_blocks.py 里有个Focus类,它跟YOLOv5里的Focus是一样的,都是把输入张量切分成4份,然后concat+conv。这时按照第(2)节里讲述的解决办法,修改Focus类,重新运行export_onnx.py生成onnx文件,Opencv读取onnx文件就不会再出错了。
在github发布了一套使用OpenCV部署Yolo-FastestV2的程序,依然是包含C++和Python两种版本的程序实现。地址是
https://github.com/hpc203/yolo-fastestv2-opencv
经过运行,体验到这个Yolo-FastestV2的速度确实很快,而且onnx文件只有957kb大小,不超过1M。在官方代码https://github.com/dog-qiuqiu/Yolo-FastestV2里,学习它的网络结构。设断点调试,查看中间变量可以看到,在model/detector.py,网络输出了6个张量
它们的形状分别是
torch.Size([1, 12, 22, 22])
torch.Size([1, 3, 22, 22])
torch.Size([1, 80, 22, 22])
torch.Size([1, 12, 11, 11])
torch.Size([1, 3, 11, 11])
torch.Size([1, 80, 11, 11])
结合配置文件data/coco.data,可以看到模型输入是352x352的图片,而输出有22x22和11x11这两种尺度的特征图,这说明Yolo-FastestV2的输出只有缩放16倍和缩放32倍这两种尺度的特征图,比yolov3,v4,v5系列的都要少一个尺度特征图。其次在配置文件data/coco.data还可以看到anchor一共有6个,分别给两个尺度特征图里的网格点分配3个。观察输出的6个张量的形状信息,很明显前3个张量是22x22尺度特征图的检测框坐标回归量bbox_reg,检测框目标置信度obj_conf,检测框类别置信度cls_conf。由于给每个网格点分配3个anchor,检测框坐标包含(center_x, center_y, width, height),因此维数是4*3=12,这也就明白了bbox_reg的第1个维度是12,obj_conf的第1个维度是3,而COCO数据集有80类,那么cls_conf的第1个维度应该是3*80=240,但是在上面调试信息里显示的是80类。继续设断点调试代码,在utils/utils.py里,第326行有这么一行代码
类别置信度复制了3份,结合这个后处理代码,可以看出类别置信度对3个anchor是共享的。
在观察出Yolo-FastestV2的这些特性之后,可以理解为何它的速度快和模型文件小的原因了。主要是因为它的输入图片尺寸比传统yolov3,v4,v5系列的要小,它的输出特征图尺寸个数,也比传统yolo的要少,最后对网格点上的3个anchor是共享类别置信度的,这也减少了特种通道数。
8月29日,我在github发布了一套使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现。地址是:
https://github.com/hpc203/YOLOP-opencv-dnn
在这里我讲一下生成onnx文件需要注意的地方,YOLOP的官方代码地址是 https://github.com/hustvl/YOLOP ,它是华中科技大学视觉团队发布的,它的代码是使用pytorch作为深度学习框架。仔细阅读和运行调试他的代码,可以看出,它的代码是在ultralytics的yolov5里修改的,添加了可行驶区域分割和车道线分割这两个分割头,在bdd100k数据集上的训练的,不过YOLOP的检测类别只保留了bdd100k数据集里的车辆这一个类别。生成onnx文件,第一步是把我发布的代码里的export_onnx.py拷贝到https://github.com/hustvl/YOLOP的主目录里。第二步,在https://github.com/hustvl/YOLOP的主目录里,打开lib/models/common.py,首先修改Focus类,原始的Focus类的forward函数里是由切片操作的,那么这时按照第(2)节里讲述的解决办法,修改Focus类,示例代码如下
class Contract(nn.Module):
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
def __init__(self, gain=2):
super().__init__()
self.gain = gain
def forward(self, x):
N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain'
s = self.gain
x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2)
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40)
class Focus(nn.Module):
# Focus wh information into c-space
# slice concat conv
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
super(Focus, self).__init__()
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
self.contract = Contract(gain=2)
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
# return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
return self.conv(self.contract(x))
接下来修改Detect类里的forward函数,示例代码如下
def forward(self, x):
if not torch.onnx.is_in_onnx_export():
z = [] # inference output
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
# print(str(i)+str(x[i].shape))
bs, _, ny, nx = x[i].shape # x(bs,255,w,w) to x(bs,3,w,w,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
# print(str(i)+str(x[i].shape))
if not self.training: # inference
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
y = x[i].sigmoid()
# print("**")
# print(y.shape) #[1, 3, w, h, 85]
# print(self.grid[i].shape) #[1, 3, w, h, 2]
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
"""print("**")
print(y.shape) #[1, 3, w, h, 85]
print(y.view(bs, -1, self.no).shape) #[1, 3*w*h, 85]"""
z.append(y.view(bs, -1, self.no))
return x if self.training else (torch.cat(z, 1), x)
else:
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
# print(str(i)+str(x[i].shape))
bs, _, ny, nx = x[i].shape # x(bs,255,w,w) to x(bs,3,w,w,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
x[i] = torch.sigmoid(x[i])
x[i] = x[i].view(-1, self.no)
return torch.cat(x, dim=0)
修改完之后,运行export_onnx.py就能生成onnx文件,并且opencv读取正常的。
9月18日,我在github上发布了一套使用ONNXRuntime部署anchor-free系列的YOLOR,依然是包含C++和Python两种版本的程序。起初我是想使用OpenCV部署的,但是opencv读取onnx文件总是出错,于是我换用ONNXRuntime部署。地址是:
https://github.com/hpc203/yolor-onnxruntime
END