深度学习近10年,10篇必读论文总结

共 1609字,需浏览 4分钟

 ·

2024-04-11 05:56

你好,我是郭震

深度学习领域2014-2023每年的标志性论文

2014

  • 生成对抗网络(Generative Adversarial Nets)
    • Ian Goodfellow et al. 提出了GAN,开启了生成模型的新时代

2015

  • 深度残差网络(Deep Residual Learning for Image Recognition)
    • Kaiming He et al. 提出ResNet,极大提升了深度网络的性能和可训练性

2016

  • WaveNet: 生成原始语音波形的深度神经网络(WaveNet: A Generative Model for Raw Audio)
    • Aäron van den Oord et al. 在语音合成领域取得了突破性进展。

2017

  • 注意力机制(Attention Is All You Need)
    • Ashish Vaswani et al. 通过提出Transformer模型,彻底改变了自然语言处理的面貌。

2018

  • BERT: 深度双向Transformer的预训练(BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding)
    • Jacob Devlin et al. 提出了BERT模型,显著提升了自然语言处理任务的性能。

2019

  • 大规模语言模型GPT-2(Language Models are Unsupervised Multitask Learners)
    • OpenAI 提出了GPT-2模型,展示了大规模语言模型在多种任务上的能力。

2020

  • EfficientDet: 可扩展且高效的目标检测模型(EfficientDet: Scalable and Efficient Object Detection)
    • Mingxing Tan et al. 通过EfficientDet在目标检测领域实现了新的效率和精度平衡。

2021

  • Vision Transformer(An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)
    • Alexey Dosovitskiy et al. 将Transformer架构成功应用于图像识别任务,开启了计算机视觉领域的新篇章。

2022

  • DALL·E 2: 生成高质量图像的模型(Hierarchical Text-Conditional Image Generation with CLIP Guides)
    • OpenAI 提出了DALL·E 2,能够根据文本描述生成高质量、高分辨率的图像

2023

  • Pathways Language Model (PaLM): 缩放到数万亿参数的语言模型(Pathways Language Model: Scaling to Trillions of Parameters for Natural Language Understanding)
    • Google 提出了PaLM,展示了大模型在多语言理解和生成任务上的巨大潜力。


浏览 26
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报