那些引用次数在15000次以上的都是什么神仙论文?

数据派THU

共 6792字,需浏览 14分钟

 ·

2022-04-10 08:35


来源:汉斯出版社

本文约3400字,建议阅读5分钟

总结梳理了知乎上“引用次数在15000次以上的都是什么论文?”这一问题的经典回答。


前言

小编在这里总结梳理了知乎上“引用次数在15000次以上的都是什么论文?”这一问题的经典回答,希望能帮助到各位进一步了解领域内的相关进展,并且通过阅读这些经典论文或许也会给您带来不少启发。



1. 机器学习领域

我来列举一些机器学习(Machine Learning)领域的高被引文章。

机器学习领域泰斗级学者Geoffrey Hinton的文章引用:


引用次数超过15000次文章有:

  1. ImageNet Classification with Deep Convolutional Neural Networks,引用75231次(AlexNet,点燃了深度学习的热潮,因此2012年被认为是深度学习元年,当然要十分感谢ImageNet和GPU的加持);
  2. Learning internal representations by error-propagation & Learning representations by back-propagating errors,引用50716次(BP算法,殿堂级别的成果,几乎所有关于神经网络的文章都会用到BP算法);
  3. Deep learning,引用33222次(“三巨头”关于深度学习的综述文章);
  4. Dropout: a simple way to prevent neural networks from overfitting,引用24452次(Dropout是一种防止深度学习模型过拟合的正则化方法,目前已被Google申请专利,面对封锁,华为诺亚实验室开源了Disout算法,直接对标Google的Dropout);
  5. Visualizing data using t-SNE,引用16957次(t-SNE是一种流形学习方法,用于数据降维和可视化)。

Geoffrey Hinton谷歌学术引用次数



在机器学习领域还有一个泰斗级的人物Jürgen Schmidhuber,他的一篇文章Long short-term memory目前的引用量是40934次,是深度学习-循环神经网络(Recurrent Neural Network, RNN)中的重要成果。但是LeCun Y,Bengio Y和Hinton G在2015年发表在Nature上的文章Deep learning作者中没有Jürgen Schmidhuber,不过Schmidhuber在2015也发表了一篇关于深度学习的综述文章Deep learning in neural networks: An overview,目前的引用量是10917。



机器学习领域还有一些重要的成果,对应的文章也有不俗的引用量。比如:
  • 一直被对比,从未被超越的Adam,目前的引用量是60604次;
  • 使神经网络训练更快、更稳定的Batch normalization,目前的引用量是22986次;
  • 避免深层网络训练时梯度消失或梯度爆炸的激活函数—线性整流函数ReLU(Rectified linear units improve restricted boltzmann machines),目前的引用量是11548次。
  • Zisserman在2014年发表的关于VGGNet的文章Very deep convolutional networks for large-scale image recognition,目前的引用量是48691次。Google在2015年发表的关于GoogLeNet的文章Going deeper with convolutions,目前的引用量是26353次。何凯明2016年的文章Deep residual learning for image recognition,提出的多达152层ResNet,目前的引用量是63253次。2016年提出的用于目标检测的Faster R-CNN,目前的引用量是24215次。


来源:小牧牧(知乎)

https://www.zhihu.com/question/433702668/answer/1617092684


2. 计算机视觉领域

这里重点盘点一下AI领域,特别是CV方向的论文。

值得说一下,自从2012年,特别是2014年后,AI领域再度火爆,延续至今,很多优秀论文(特别是基于深度学习)也是发表在这个期间,引用量也迅速爆炸。

  • 注:下面会边介绍作者,边介绍论文,侧重点有点不同。


计算机视觉领域引用量1.5万+的论文

Andrew Zisserman(传闻欧洲计算机视觉第一人)

第一篇引用量近5万的是:深度学习时代的经典backbone模型VGG:Very deep convolutional networks for large-scale image recognition

第二篇引用量近3万,这其实是一本书《Multiple view geometry in computer vision》,可称为深度学习时代前的CV必读之作(现在其实也强推,但不少新入坑CV的人,直接跳过这些基础知识,去玩CNN了)

Jitendra Malik


加州大学伯克利分校的电子工程与计算机科学系(EECS)教授 Jitendra Malik获颁 2019 年 IEEE 计算机先驱奖。

第一篇引用量近4万,算是12年之前人工智能最经典的书籍,内容覆盖范围相当之广。不过Jitendra Malik并非一二作,所以搜索该书的时候,不容易看到他的名字。
第二篇引用量近1.7万,基于传统方法的图像分割代表作!

下面说说深度学习三巨头(Hinton、Bengio和LeCun)

Geoffrey Hinton

Hinton的代表作太多了,1.5万+引用量的论文见下图(6篇)。比如


第一篇引用量7.5万+,发表于2012年的AlexNet!永远滴神!
第二篇引用量3.3万+,是为了纪念人工智能60周年,深度学习三巨头合作在Nature上发表深度学习的综述性文章:Deep Learning
还有4篇破1.5万引用量的论文,这里不赘述,膜拜即可!

Yoshua Bengio

Bengio教授的代表作也太多了,1.5万+引用量的论文见下图(5篇)。比如:


第一篇上面说过了,是深度学习三巨头合著的。
第二篇引用量3万+,这是和LeCun提出了当时风靡一时的字符识别器(当时就是典型落地应用)
第三篇引用量2.5万+,这是和Goodfellow提出了鼎鼎大名的GAN!
第四篇引用量2万+,这是和Goodfellow发布了深度学习时代的"圣经"书籍:Deep Learning,国内不少人又称为花书。

Yann LeCun

LeCun大佬的两篇破1.5万的工作,上面已经介绍了。


Luc Van Gool

Luc Van Gool 苏黎世联邦理工学院教授,据了解,有若干中国学生曾师从于他。

这篇近3万引用量就是非常著名的SURF算法。


上面提到SURF算法,就不得不提SIFT算法。

David Lowe


SIFT算法引用量近6万!其是手工特征时代的最具代表性工作!SURF、ORB在它面前都是弟弟,截止目前SIFT仍被广泛应用,相当能打!

Trevor Darrell

第一篇引用量近2万,鼎鼎大名的基于FCN的语义分割网络!
第二篇引用量1.5万+,鼎鼎大名的R-CNN目标检测网络。


李飞飞(Li Fei-Fei)

李飞飞女神,创建了ImageNet数据集和相关赛事~ 影响力巨大。


上述主要是AI、CV领域的大前辈(年龄基本40+),这里重点介绍几位"新秀":

何恺明(Kaiming He)

做CV的应该都听过何恺明,有鼎鼎大名的ResNet、Faster R-CNN、Mask R-CNN、Focal Loss、FPN和近期的MoCo等工作。


第一篇是目前CV主流使用的backbone:ResNet,永远滴神!
第二篇是目标检测领域代表性网络:Faster R-CNN。

估计17年发表的Mask R-CNN 也快破1.5万引用量了。

Ross Girshick

他与何恺明算是合作搭档,都在FAIR工作,有不少合作的工作。

有鼎鼎大名的R-CNN系列工作,合作的有Caffe、Mask R-CNN、Focal Loss、FPN和YOLO等工作。


Ian Goodfellow

GAN 之父!下面三个工作都是目前顶级活跃的,比如GAN、Deep Learning书籍和TensorFlow框架。


任少卿(Shaoqing Ren)

Faster R-CNN一作!貌似现在不做研究了,主要在企业(目前在蔚来)担任技术主管/副总裁。


其实CV领域还有很多超1.5万的论文,限于篇幅这里就不一一盘点:


作者:BeyondSelf(知乎)

https://www.zhihu.com/question/433702668/answer/1624083551


3、通信和图像处理

梳理一下通信和图像处理方面,读过的一些经典的,超过15000引用的论文。

1. A Mathematical theory of communication
引用次数:78680
评价:开创了信息论,直接奠定了通信的发展,大名鼎鼎的香农三定理和熵的概念就是在这篇文章中提出的。没有它,就没有WiFi和5G,也没有我们刷着知乎听着歌

2. A combined coerner and edge detector

引用次数:18167
评价:提出了角点特征,能够检测图片中的角点、边缘和图片。是图像特征提取的代表作,是图像分割、匹配等的基础。

3. Distinctive image features from scale-invariant keypoints


引用次数:59561
评价:大名鼎鼎的SIFT特征,具有尺度、方向、仿射不变性,和上一篇论文的Haris特征一起,成为图像特征提取的两个最重要技术。

4. Object recognition from local scale-invariant features

引用次数:20100
评价:David Lowe的另一篇文章,说的是利用尺度不变特征来进行目标识别

5. Compressed Sensing

引用次数:27557
评价:压缩感知的代表作之一,将采样和压缩过程结合起来同时进行,直接对信号的稀疏性进行感知。

6. Robust Uncertainty Principles: Exact Signal Reconstruction From Highly Incomplete Frequency Information

引用次数:16700
评价:压缩感知的另一篇代表作

7.  A new approach to linear filtering and prediction problems

引用次数:35070
评价:提出了著名的卡尔曼滤波。如果你没听说过卡尔曼滤波不要仅,但你一定点过外卖,打过滴滴,甚至美国阿波罗号上天也用过它,根据测量值和状态方程修正真实值,就是它干的事情,

8. A computational approach to edge detection

引用次数:35942
评价:边缘检测的另一篇代表作

9. Gradient-based learning applied to document recognition


引用次数:32192
评价:LeCun的经典论文,做过机器学习的都知道,没做过机器学习的也一般听说过MNIST数据集

来源:远处群山(知乎)

https://www.zhihu.com/question/433702668/answer/1622573162


4. 信号处理和图像处理

引用一万五千次以上的论文相当罕见,基本上都属于开山之作,开创了某个中等或者大领域的作品。

现在深度学习的论文里15000次引用的挺多的,看到也有其他答主总结了,我就重点说下信号处理和图像处理的经典论文,

压缩感知的两篇开山之作:

  • Donoho D L. Compressed sensing[J]. IEEE Transactions on information theory, 2006, 52(4): 1289-1306. 27000次引用
  • Candès E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on information theory, 2006, 52(2): 489-509. 16000次引用

统计学习里大名鼎鼎的LASSO:

  • Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267-288. 引用35000次

统计学习的圣典:

  • Cortes C, Vapnik V. Support-vector networks[J]. Machine learning, 1995, 20(3): 273-297.

图像分割的开山之作normalized cut:

  • Shi J, Malik J. Normalized cuts and image segmentation[J]. IEEE Transactions on pattern analysis and machine intelligence, 2000, 22(8): 888-905. 引用16000次

同样来自Malik老师的图像去噪神作——扩散滤波,威名赫赫的Perona-Malik模型,多少PDE-based image processing methods就是源自这里:

  • Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on pattern analysis and machine intelligence, 1990, 12(7): 629-639. 引用15000次

图像去噪的又一神作,超级经典的全变差模型:

  • Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: nonlinear phenomena, 1992, 60(1-4): 259-268. 引用15000次

无比经典的SIFT图像特征检测以及方向梯度直方图(HOG)模型,做图像处理的应该没有不知道这两个的:

  • Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60(2): 91-110. 58000次引用
  • Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05). IEEE, 2005, 1: 886-893. 32000次引用

做图像恢复的人肯定都知道SSIM这个指标,出自这篇文章:

  • Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE transactions on image processing, 2004, 13(4): 600-612. 引用27000

大家还知道哪些引用率超高的重量级文章呢?欢迎在留言区讨论!

编辑:于腾凯
校对:林亦霖
浏览 66
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报
评论
图片
表情
推荐
点赞
评论
收藏
分享

手机扫一扫分享

分享
举报