Python数学建模系列(一):规划问题之线性规划
线性规划
线性规划求解需要清晰两部分,目标函数(max, min) 和 约束条件 ,求解前应转化为标准形式:
样例1:求解下列线性规划问题
scipy库求解
涉及知识点
optimize.linprog
Demo代码
from scipy import optimize
import numpy as np
c = np.array([2,3,-5])
A = np.array([[-2,5,-1],[1,3,1]])
B = np.array([-10,12])
Aeq = np.array([[1,1,1]])
Beq = np.array([7])
res = optimize.linprog(-c,A,B,Aeq,Beq)
res
运行结果
注:x结果为array数组,从左到右依次表示x1 x2 x3....
对很大/小的数不使用科学计数法 np.set_printoptions(suppress=True)
Demo代码
from scipy import optimize
import numpy as np
np.set_printoptions(suppress=True)
c = np.array([2,3,-5])
A = np.array([[-2,5,-1],[1,3,1]])
B = np.array([-10,12])
Aeq = np.array([[1,1,1]])
Beq = np.array([7])
res = optimize.linprog(-c,A,B,Aeq,Beq)
res
运行结果
样例2:求解下列线性规划问题
pulp库求解
涉及知识点
LpProblem(name='NoName', sense=LpMinimize) solve(solver=None, **kwargs) LpVariable(name, lowBound=None, upBound=None, cat='Continuous', e=None)
Demo代码
import pulp as pp
# 目标函数的系数
z = [2, 3, 1]
a = [[1, 4, 2], [3, 2, 0]]
b = [8,6]
aeq = [[1,2,4]]
beq = [101]
# 确定最大最小化问题,当前确定的是最大化问题
m = pp.LpProblem(sense=pp.LpMaximize)
# 定义三个变量放到列表中
x = [pp.LpVariable(f'x{i}', lowBound=0) for i in [1, 2, 3]]
# 定义目标函数,并将目标函数加入求解的问题中
m += pp.lpDot(z, x) # lpDot 用于计算点积
# 设置比较条件
for i in range(len(a)):
m += (pp.lpDot(a[i], x) >= b[i])
# 设置相等条件
for i in range(len(aeq)):
m += (pp.lpDot(aeq[i], x) == beq[i])
# 求解
m.solve()
# 输出结果
print(f'优化结果:{pp.value(m.objective)}')
print(f'参数取值:{[pp.value(var) for var in x]}')
运行结果:
注:
最优结果为202 x1 = 101 x2=0 x3=0
样例3.运输问题
Demo代码
import pulp
import numpy as np
from pprint import pprint
def transportation_problem(costs, x_max, y_max):
row = len(costs)
col = len(costs[0])
prob = pulp.LpProblem('Transportation Proble',sense=pulp.LpMaximize)
var = [[pulp.LpVariable(f'x{i}{j}',lowBound=0,cat=pulp.LpInteger) for j in range(col)] for i in range(row)]
# 转为一维
flatten = lambda x:[y for l in x for y in flatten(l)] if type(x) is list else [x]
prob += pulp.lpDot(flatten(var),costs.flatten())
for i in range(row):
prob += (pulp.lpSum(var[i]) <= x_max[i])
for j in range(col):
prob += (pulp.lpSum([var[i][j] for i in range(row)]) <= y_max[j])
prob.solve()
return {'objective':pulp.value(prob.objective),'var':[[pulp.value(var[i][j]) for j in range(col)] for i in range(row)]}
costs = np.array([[500,550,630,1000,800,700],
[800,700,600,950,900,930],
[1000,960,840,650,600,700],
[1200,1040,980,860,880,780]])
max_plant = [76,88,96,40]
max_cultivation = [42,56,44,39,60,59]
res = transportation_problem(costs, max_plant, max_cultivation)
print(f'最大值为{res["objective"]}')
print("各个变量的取值为:")
pprint(res['var'])
运行结果:
结语
学习来源:B站及其课堂PPT,对其中代码进行了复现
https://www.bilibili.com/video/BV12h411d7Dm? from=search&seid=5685064698782810720
评论